Goupil Christophe, Herbert Eric
Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236 CNRS, F-75013 Paris, France.
Entropy (Basel). 2019 Dec 24;22(1):29. doi: 10.3390/e22010029.
Adaptable or adapted? Whether it is a question of physical, biological, or even economic systems, this problem arises when all these systems are the location of matter and energy conversion. To this interdisciplinary question, we propose a theoretical framework based on the two principles of thermodynamics. Considering a finite time linear thermodynamic approach, we show that non-equilibrium systems operating in a quasi-static regime are quite deterministic as long as boundary conditions are correctly defined. The Novikov-Curzon-Ahlborn derivation applied to non-endoreversible systems then makes it possible to precisely determine the conditions for obtaining characteristic operating points. As a result, power maximization principle (MPP), entropy minimization principle (mEP), efficiency maximization, or waste minimization states are only specific modalities of system operation. We show that boundary conditions play a major role in defining operating points because they define the intensity of the feedback that ultimately characterizes the operation. Armed with these thermodynamic foundations, we show that the intrinsically most efficient systems are also the most constrained in terms of controlling the entropy and dissipation production. In particular, we show that the best figure of merit necessarily leads to a vanishing production of power. On the other hand, a class of systems emerges, which, although they do not offer extreme efficiency or power, have a wide range of use and therefore marked robustness. It therefore appears that the number of degrees of freedom of the system leads to an optimization of the allocation of entropy production.
适应性还是已适应?无论是物理、生物甚至经济系统,当所有这些系统都是物质和能量转换的场所时,这个问题就会出现。对于这个跨学科问题,我们基于热力学的两个原理提出了一个理论框架。考虑到有限时间线性热力学方法,我们表明,只要边界条件正确定义,在准静态状态下运行的非平衡系统是相当确定的。将诺维科夫 - 库尔宗 - 阿尔伯恩推导应用于非内可逆系统,就可以精确确定获得特征运行点的条件。因此,功率最大化原理(MPP)、熵最小化原理(mEP)、效率最大化或废物最小化状态只是系统运行的特定模式。我们表明,边界条件在定义运行点方面起着主要作用,因为它们定义了最终表征运行的反馈强度。基于这些热力学基础,我们表明,本质上最有效的系统在控制熵和耗散产生方面也是最受限制的。特别是,我们表明最佳品质因数必然导致功率产生为零。另一方面,出现了一类系统,虽然它们没有提供极高的效率或功率,但具有广泛的用途,因此具有显著的稳健性。因此,似乎系统的自由度数量导致了熵产生分配的优化。