Suppr超能文献

长程相关心血管和呼吸变异性序列的多变量和多尺度复杂性

Multivariate and Multiscale Complexity of Long-Range Correlated Cardiovascular and Respiratory Variability Series.

作者信息

Martins Aurora, Pernice Riccardo, Amado Celestino, Rocha Ana Paula, Silva Maria Eduarda, Javorka Michal, Faes Luca

机构信息

Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal.

Centro de Matemática da Universidade do Porto (CMUP), 4169-007 Porto, Portugal.

出版信息

Entropy (Basel). 2020 Mar 11;22(3):315. doi: 10.3390/e22030315.

Abstract

Assessing the dynamical complexity of biological time series represents an important topic with potential applications ranging from the characterization of physiological states and pathological conditions to the calculation of diagnostic parameters. In particular, cardiovascular time series exhibit a variability produced by different physiological control mechanisms coupled with each other, which take into account several variables and operate across multiple time scales that result in the coexistence of short term dynamics and long-range correlations. The most widely employed technique to evaluate the dynamical complexity of a time series at different time scales, the so-called multiscale entropy (MSE), has been proven to be unsuitable in the presence of short multivariate time series to be analyzed at long time scales. This work aims at overcoming these issues via the introduction of a new method for the assessment of the multiscale complexity of multivariate time series. The method first exploits vector autoregressive fractionally integrated (VARFI) models to yield a linear parametric representation of vector stochastic processes characterized by short- and long-range correlations. Then, it provides an analytical formulation, within the theory of state-space models, of how the VARFI parameters change when the processes are observed across multiple time scales, which is finally exploited to derive MSE measures relevant to the overall multivariate process or to one constituent scalar process. The proposed approach is applied on cardiovascular and respiratory time series to assess the complexity of the heart period, systolic arterial pressure and respiration variability measured in a group of healthy subjects during conditions of postural and mental stress. Our results document that the proposed methodology can detect physiologically meaningful multiscale patterns of complexity documented previously, but can also capture significant variations in complexity which cannot be observed using standard methods that do not take into account long-range correlations.

摘要

评估生物时间序列的动态复杂性是一个重要课题,其潜在应用范围广泛,涵盖从生理状态和病理状况的表征到诊断参数的计算。特别是,心血管时间序列表现出由相互耦合的不同生理控制机制产生的变异性,这些机制考虑了多个变量,并在多个时间尺度上运行,导致短期动态和长程相关性并存。评估时间序列在不同时间尺度上动态复杂性的最广泛使用的技术,即所谓的多尺度熵(MSE),已被证明在存在需要在长时间尺度上分析的短多元时间序列时并不适用。这项工作旨在通过引入一种评估多元时间序列多尺度复杂性的新方法来克服这些问题。该方法首先利用向量自回归分数积分(VARFI)模型来产生具有短程和长程相关性的向量随机过程的线性参数表示。然后,它在状态空间模型理论范围内提供了一个解析公式,说明当在多个时间尺度上观察过程时VARFI参数如何变化,最终利用该公式得出与整个多元过程或一个组成标量过程相关的MSE度量。所提出的方法应用于心血管和呼吸时间序列,以评估一组健康受试者在姿势和精神压力条件下测量的心动周期、收缩期动脉压和呼吸变异性的复杂性。我们的结果表明,所提出的方法可以检测到先前记录的具有生理意义的多尺度复杂性模式,但也可以捕捉到使用不考虑长程相关性的标准方法无法观察到的复杂性显著变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/967a/7516773/d00625e9ddd2/entropy-22-00315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验