Pinto Helder, Pernice Riccardo, Amado Celestino, Silva Maria Eduarda, Javorka Michal, Faes Luca, Rocha Ana Paula
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:748-751. doi: 10.1109/EMBC46164.2021.9630004.
Heart Period (H) results from the activity of several coexisting control mechanisms, involving Systolic Arterial Pressure (S) and Respiration (R), which operate across multiple time scales encompassing not only short-term dynamics but also long-range correlations. In this work, multiscale representation of Transfer Entropy (TE) and of its decomposition in the network of these three interacting processes is obtained by extending the multivariate approach based on linear parametric VAR models to the Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This approach allows to dissect the different contributions to cardiac dynamics accounting for the simultaneous presence of short and long term dynamics. The proposed method is first tested on simulations of a benchmark VARFI model and then applied to experimental data consisting of H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress. The results reveal that the proposed method can highlight the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems.
心动周期(H)源于多种共存控制机制的活动,涉及收缩压(S)和呼吸(R),这些机制在多个时间尺度上起作用,不仅包括短期动态,还包括长程相关性。在这项工作中,通过将基于线性参数VAR模型的多变量方法扩展到高斯过程的向量自回归分数积分(VARFI)框架,获得了转移熵(TE)及其在这三个相互作用过程网络中的分解的多尺度表示。这种方法允许剖析对心脏动力学的不同贡献,同时考虑短期和长期动态的存在。所提出的方法首先在基准VARFI模型的模拟上进行测试,然后应用于由健康受试者在静息、精神和姿势应激状态下测量的H、S和R时间序列组成的实验数据。结果表明,所提出的方法可以突出信息传递对耦合动力系统中短期和长程相关性平衡的依赖性。