Suppr超能文献

心率变异性动力学中的熵反映了心率变异性生物反馈训练如何在应激-认知相互作用过程中改善神经内脏复杂性。

Entropy in Heart Rate Dynamics Reflects How HRV-Biofeedback Training Improves Neurovisceral Complexity during Stress-Cognition Interactions.

作者信息

Deschodt-Arsac Veronique, Blons Estelle, Gilfriche Pierre, Spiluttini Beatrice, Arsac Laurent M

机构信息

Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, 33400 Talence, France.

CATIE-Centre Aquitain des Technologies de l'Information et Electroniques, 33400 Talence, France.

出版信息

Entropy (Basel). 2020 Mar 11;22(3):317. doi: 10.3390/e22030317.

Abstract

Despite considerable appeal, the growing appreciation of biosignals complexity reflects that system complexity needs additional support. A dynamically coordinated network of neurovisceral integration has been described that links prefrontal-subcortical inhibitory circuits to vagally-mediated heart rate variability. Chronic stress is known to alter network interactions by impairing amygdala functional connectivity. HRV-biofeedback training can counteract stress defects. We hypothesized the great value of an entropy-based approach of beat-to-beat biosignals to illustrate how HRVB training restores neurovisceral complexity, which should be reflected in signal complexity. In thirteen moderately-stressed participants, we obtained vagal tone markers and psychological indexes (state anxiety, cognitive workload, and Perceived Stress Scale) before and after five-weeks of daily HRVB training, at rest and during stressful cognitive tasking. Refined Composite Multiscale Entropy (RCMSE) was computed over short time scales as a marker of signal complexity. Heightened vagal tone at rest and during stressful tasking illustrates training benefits in the brain-to-heart circuitry. The entropy index reached the highest significance levels in both variance and ROC curves analyses. Restored vagal activity at rest correlated with gain in entropy. We conclude that HRVB training is efficient in restoring healthy neurovisceral complexity and stress defense, which is reflected in HRV signal complexity. The very mechanisms that are involved in system complexity remain to be elucidated, despite abundant literature existing on the role played by amygdala in brain interconnections.

摘要

尽管具有相当大的吸引力,但对生物信号复杂性的日益认识反映出系统复杂性需要额外的支持。已经描述了一个动态协调的神经内脏整合网络,该网络将前额叶-皮质下抑制回路与迷走神经介导的心率变异性联系起来。已知慢性应激会通过损害杏仁核功能连接来改变网络相互作用。心率变异性生物反馈训练可以抵消应激缺陷。我们假设基于熵的逐搏生物信号方法具有巨大价值,以说明心率变异性生物反馈训练如何恢复神经内脏复杂性,这应反映在信号复杂性中。在13名中度应激的参与者中,我们在为期五周的每日心率变异性生物反馈训练前后,在静息状态和应激认知任务期间,获取了迷走神经张力标志物和心理指标(状态焦虑、认知工作量和感知压力量表)。在短时间尺度上计算精细复合多尺度熵(RCMSE)作为信号复杂性的标志物。静息状态和应激任务期间迷走神经张力增强说明了对脑-心回路的训练益处。熵指数在方差和ROC曲线分析中均达到最高显著水平。静息状态下恢复的迷走神经活动与熵的增加相关。我们得出结论,心率变异性生物反馈训练在恢复健康的神经内脏复杂性和应激防御方面是有效的,这反映在心率变异性信号复杂性中。尽管有大量关于杏仁核在脑连接中所起作用的文献,但涉及系统复杂性的具体机制仍有待阐明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd88/7516774/e2064a0df587/entropy-22-00317-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验