Martín-González Elena, Sevilla Teresa, Revilla-Orodea Ana, Casaseca-de-la-Higuera Pablo, Alberola-López Carlos
Laboratorio de Procesado de Imagen, E.T.S.I. Telecomunicación, Universidad de Valladolid, Paseo Belén 15, 47011 Valladolid, Spain.
Unidad de Imagen Cardiaca, Hospital Clínico Universitario de Valladolid, CIBER de Enfermedades Cardiovasculares (CIBERCV), 47005 Valladolid, Spain.
Entropy (Basel). 2020 Jun 19;22(6):687. doi: 10.3390/e22060687.
Groupwise image (GW) registration is customarily used for subsequent processing in medical imaging. However, it is computationally expensive due to repeated calculation of transformations and gradients. In this paper, we propose a deep learning (DL) architecture that achieves GW elastic registration of a 2D dynamic sequence on an affordable average GPU. Our solution, referred to as dGW, is a simplified version of the well-known U-net. In our GW solution, the image that the other images are registered to, referred to in the paper as , is iteratively obtained together with the registered images. Design and evaluation have been carried out using 2D cine cardiac MR slices from 2 databases respectively consisting of 89 and 41 subjects. The first database was used for training and validation with 66.6-33.3% split. The second one was used for validation (50%) and testing (50%). Additional network hyperparameters, which are-in essence-those that control the transformation smoothness degree, are obtained by means of a forward selection procedure. Our results show a 9-fold runtime reduction with respect to an optimization-based implementation; in addition, making use of the well-known structural similarity (SSIM) index we have obtained significative differences with dGW with respect to an alternative DL solution based on Voxelmorph.
逐组图像(GW)配准通常用于医学成像的后续处理。然而,由于变换和梯度的重复计算,其计算成本很高。在本文中,我们提出了一种深度学习(DL)架构,该架构能够在价格合理的普通GPU上实现二维动态序列的GW弹性配准。我们的解决方案称为dGW,是著名的U-net的简化版本。在我们的GW解决方案中,其他图像所配准的图像(本文中称为 )与配准后的图像一起迭代获得。分别使用来自两个数据库的二维心脏电影磁共振成像切片进行了设计和评估,这两个数据库分别包含89名和41名受试者。第一个数据库用于训练和验证,划分比例为66.6 - 33.3%。第二个数据库用于验证(50%)和测试(50%)。通过前向选择程序获得了其他网络超参数,这些超参数本质上是控制变换平滑度的参数。我们的结果表明,相对于基于优化的实现,运行时间减少了9倍;此外,利用著名的结构相似性(SSIM)指数,我们发现dGW与基于Voxelmorph的另一种DL解决方案相比存在显著差异。