Upendra Roshan Reddy, Simon Richard, Shontz Suzanne M, Linte Cristian A
Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA.
Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
Funct Imaging Model Heart. 2023 Jun;13958:375-383. doi: 10.1007/978-3-031-35302-4_39. Epub 2023 Jun 16.
Accurate cardiac motion estimation is a crucial step in assessing the kinematic and contractile properties of the cardiac chambers, thereby directly quantifying the regional cardiac function, which plays an important role in understanding myocardial diseases and planning their treatment. Since the cine cardiac magnetic resonance imaging (MRI) provides dynamic, high-resolution 3D images of the heart that depict cardiac motion throughout the cardiac cycle, cardiac motion can be estimated by finding the optical flow representation between the consecutive 3D volumes from a 4D cine cardiac MRI dataset, thereby formulating it as an image registration problem. Therefore, we propose a hybrid convolutional neural network (CNN) and Vision Transformer (ViT) architecture for deformable image registration of 3D cine cardiac MRI images for consistent cardiac motion estimation. We compare the image registration results of our proposed method with those of the VoxelMorph CNN model and conventional B-spline free form deformation (FFD) non-rigid image registration algorithm. We conduct all our experiments on the open-source Automated Cardiac Diagnosis Challenge (ACDC) dataset. Our experiments show that the deformable image registration results obtained using the proposed method outperform the CNN model and the traditional FFD image registration method.
准确的心脏运动估计是评估心脏腔室的运动学和收缩特性的关键步骤,从而直接量化局部心脏功能,这在理解心肌疾病及其治疗规划中起着重要作用。由于电影心脏磁共振成像(MRI)提供了心脏的动态、高分辨率3D图像,描绘了整个心动周期中的心脏运动,因此可以通过在4D电影心脏MRI数据集中找到连续3D体积之间的光流表示来估计心脏运动,从而将其表述为一个图像配准问题。因此,我们提出了一种混合卷积神经网络(CNN)和视觉Transformer(ViT)架构,用于3D电影心脏MRI图像的可变形图像配准,以实现一致的心脏运动估计。我们将所提出方法的图像配准结果与VoxelMorph CNN模型和传统的B样条自由形式变形(FFD)非刚性图像配准算法的结果进行比较。我们在开源的自动心脏诊断挑战赛(ACDC)数据集上进行了所有实验。我们的实验表明,使用所提出方法获得的可变形图像配准结果优于CNN模型和传统的FFD图像配准方法。