Suppr超能文献

高阶坐标与动量不确定性的最小乘积:显著与微弱的高阶压缩

Minimal Products of Coordinate and Momentum Uncertainties of High Orders: Significant and Weak High-Order Squeezing.

作者信息

Citeli de Freitas Miguel, Dantas Meireles Vitor, Dodonov Viktor V

机构信息

Institute of Physics, University of Brasilia, P.O. Box 04455, Brasilia 70919-970, DF, Brazil.

Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, São Carlos 13560-970, SP, Brazil.

出版信息

Entropy (Basel). 2020 Sep 3;22(9):980. doi: 10.3390/e22090980.

Abstract

We consider the problem of minimization of products of mean values of the high powers of operators x and p. From this point of view, we study several two-term superpositions of the Fock states, as well as three popular families of infinite superpositions: squeezed states, even/odd coherent states, and orthogonal even coherent states (or compass states). The new element is the analysis of products of the corresponding (co)variances and the related generalized (Robertson-Schrödinger) intelligent states (RSIS). In particular, we show that both Fock and pure Gaussian homogeneous states are RSIS for the fourth powers (but not for the sixth ones). We show that lower bounds of the high-order uncertainty products can be significantly below the vacuum values. In this connection, the concept of significant and weak high-order squeezing is introduced.

摘要

我们考虑算子x和p的高次幂的平均值乘积的最小化问题。从这个角度出发,我们研究了福克态的几种两项叠加,以及三个流行的无限叠加族:压缩态、偶/奇相干态和正交偶相干态(或罗盘态)。新的内容是对相应(协)方差的乘积以及相关的广义(罗伯逊 - 薛定谔)智能态(RSIS)的分析。特别地,我们表明福克态和纯高斯均匀态对于四次幂是RSIS(但对于六次幂不是)。我们表明高阶不确定度乘积的下限可以显著低于真空值。就此,引入了显著和弱高阶压缩的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25d4/7597293/5600ed9270ae/entropy-22-00980-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验