Suppr超能文献

教程:单细胞 RNA 测序数据分析的计算分析指南。

Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data.

机构信息

Wellcome Sanger Institute, Hinxton, UK.

Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.

出版信息

Nat Protoc. 2021 Jan;16(1):1-9. doi: 10.1038/s41596-020-00409-w. Epub 2020 Dec 7.

Abstract

Single-cell RNA sequencing (scRNA-seq) is a popular and powerful technology that allows you to profile the whole transcriptome of a large number of individual cells. However, the analysis of the large volumes of data generated from these experiments requires specialized statistical and computational methods. Here we present an overview of the computational workflow involved in processing scRNA-seq data. We discuss some of the most common tasks and the tools available for addressing central biological questions. In this article and our companion website ( https://scrnaseq-course.cog.sanger.ac.uk/website/index.html ), we provide guidelines regarding best practices for performing computational analyses. This tutorial provides a hands-on guide for experimentalists interested in analyzing their data as well as an overview for bioinformaticians seeking to develop new computational methods.

摘要

单细胞 RNA 测序(scRNA-seq)是一种流行且强大的技术,可用于对大量单个细胞的整个转录组进行分析。然而,这些实验产生的大量数据的分析需要专门的统计和计算方法。在这里,我们介绍了处理 scRNA-seq 数据的计算工作流程概述。我们讨论了一些最常见的任务以及用于解决核心生物学问题的工具。在本文和我们的配套网站(https://scrnaseq-course.cog.sanger.ac.uk/website/index.html)中,我们提供了有关执行计算分析的最佳实践的指南。本教程为有兴趣分析数据的实验人员提供了实践指南,也为寻求开发新的计算方法的生物信息学家提供了概述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验