Qiao Yongqiang, Xiao Ning, Song Yuzhu, Deng Shiqing, Huang Rongjin, Li Laifeng, Xing Xianran, Chen Jun
Beijing Advanced Innovation Center for Materials Genome Engineering, and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
ACS Appl Mater Interfaces. 2020 Dec 23;12(51):57228-57234. doi: 10.1021/acsami.0c18416. Epub 2020 Dec 9.
Achieving high performances of ultra-low thermal expansion (ULTE) and high thermal conductivity remains challenging, due to the strong phonon/electron-lattice coupling in ULTE materials. In this study, the challenge has been solved via the construction of the core-shell structure in 0.5PbTiO-0.5(BiLa)FeO@Cu composites by the electroless plating, which can simultaneously combine the advantages of the negative thermal expansion material of 0.5PbTiO-0.5(BiLa)FeO in controlling thermal expansion, and copper metal in high thermal conductivity. By changing the volume fraction of copper, the coefficient of thermal expansion of composites can be adjusted continuously from positive to negative. In particular, a ULTE (Δ = 400 K) has been achieved in the composite of 35 vol % Cu. Intriguingly, a 3D thermal conductive network copper structure is formed for thermal conducting, which can double the thermal conductivity of the 35 vol % Cu composite from the methods by the traditional mixing (32 W·m·K) up to the core-shell structure (60 W·m·K). The present work not only provides a composite material with excellent comprehensive properties but also proposes a general chemical method to resolve the problem of low thermal conductivity in most ULTE materials.
由于超低热膨胀(ULT E)材料中存在强烈的声子/电子-晶格耦合,实现高性能的超低热膨胀和高导热性仍然具有挑战性。在本研究中,通过化学镀在0.5PbTiO-0.5(BiLa)FeO@Cu复合材料中构建核壳结构解决了这一挑战,该结构可以同时结合0.5PbTiO-0.5(BiLa)FeO这种负热膨胀材料在控制热膨胀方面的优势以及金属铜在高导热性方面的优势。通过改变铜的体积分数,复合材料的热膨胀系数可以从正值连续调节到负值。特别是,在含35 vol%铜的复合材料中实现了超低热膨胀(Δ = 400 K)。有趣的是,形成了用于导热的三维导热网络铜结构,这使得含35 vol%铜的复合材料的热导率从传统混合方法(32 W·m·K)提高到核壳结构(60 W·m·K),提高了一倍。本工作不仅提供了一种具有优异综合性能的复合材料,还提出了一种通用的化学方法来解决大多数超低热膨胀材料中低导热性的问题。