Coq Germanicus Rosine, De Wolf Peter, Lallemand Florent, Bunel Catherine, Bardy Serge, Murray Hugues, Lüders Ulrike
Normandie Université, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France.
Bruker Nano Surfaces, 112 Robin Hill Road, CA 93117, Santa Barbara, USA.
Beilstein J Nanotechnol. 2020 Nov 23;11:1764-1775. doi: 10.3762/bjnano.11.159. eCollection 2020.
This work addresses the need for a comprehensive methodology for nanoscale electrical testing dedicated to the analysis of both "front end of line" (FEOL) (doped semiconducting layers) and "back end of line" (BEOL) layers (metallization, trench dielectric, and isolation) of highly integrated microelectronic devices. Based on atomic force microscopy, an electromagnetically shielded and electrically conductive tip is used in scanning microwave impedance microscopy (sMIM). sMIM allows for the characterization of the local electrical properties through the analysis of the microwave impedance of the metal-insulator-semiconductor nanocapacitor (nano-MIS capacitor) that is formed by tip and sample. A highly integrated monolithic silicon PIN diode with a 3D architecture is analysed. sMIM measurements of the different layers of the PIN diode are presented and discussed in terms of detection mechanism, sensitivity, and precision. In the second part, supported by analytic calculations of the equivalent nano-MIS capacitor, a new multidimensional approach, including a complete parametric investigation, is performed with a dynamic spectroscopy method. The results emphasize the strong impact, in terms of distinction and location, of the applied bias on the local sMIM measurements for both FEOL and BEOL layers.
这项工作满足了对一种全面的纳米级电学测试方法的需求,该方法专门用于分析高度集成微电子器件的“前端线路”(FEOL)(掺杂半导体层)和“后端线路”(BEOL)层(金属化、沟槽电介质和隔离)。基于原子力显微镜,扫描微波阻抗显微镜(sMIM)中使用了电磁屏蔽且导电的探针。通过分析由探针和样品形成的金属-绝缘体-半导体纳米电容器(纳米MIS电容器)的微波阻抗,sMIM能够表征局部电学性质。对具有三维结构的高度集成单片硅PIN二极管进行了分析。从检测机制、灵敏度和精度方面对PIN二极管不同层的sMIM测量结果进行了展示和讨论。在第二部分中,在等效纳米MIS电容器解析计算的支持下,采用动态光谱法进行了一种新的多维方法,包括完整的参数研究。结果强调了施加偏置在区分和定位方面对FEOL和BEOL层局部sMIM测量的强烈影响。