Suppr超能文献

在环境大气下进行导电原子力显微镜(AFM)时碳化硅(SiC)掺杂的影响。

SiC Doping Impact during Conducting AFM under Ambient Atmosphere.

作者信息

Villeneuve-Faure Christina, Boumaarouf Abdelhaq, Shah Vishal, Gammon Peter M, Lüders Ulrike, Coq Germanicus Rosine

机构信息

LAPLACE (Laboratoire Plasma et Conversion d'Energie), Université de Toulouse, CNRS, UPS, INPT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France.

CRISMAT UMR6508 (Laboratoire de Cristallographie et Sciences des Matériaux), Normandie University, Ensicaen, Unicaen, CNRS, 14000 Caen, France.

出版信息

Materials (Basel). 2023 Aug 1;16(15):5401. doi: 10.3390/ma16155401.

Abstract

The characterization of silicon carbide (SiC) by specific electrical atomic force microscopy (AFM) modes is highly appreciated for revealing its structure and properties at a nanoscale. However, during the conductive AFM (C-AFM) measurements, the strong electric field that builds up around and below the AFM conductive tip in ambient atmosphere may lead to a direct anodic oxidation of the SiC surface due to the formation of a water nanomeniscus. In this paper, the underlying effects of the anodization are experimentally investigated for SiC multilayers with different doping levels by studying gradual SiC epitaxial-doped layers with nitrogen (N) from 5 × 10 to 10 at/cm. The presence of the water nanomeniscus is probed by the AFM and analyzed with the force-distance curve when a negative bias is applied to the AFM tip. From the water meniscus breakup distance measured without and with polarization, the water meniscus volume is increased by a factor of three under polarization. AFM experimental results are supported by electrostatic modeling to study oxide growth. By taking into account the presence of the water nanomeniscus, the surface oxide layer and the SiC doping level, a 2D-axisymmetric finite element model is developed to calculate the electric field distribution nearby the tip contact and the current distributions at the nanocontact. The results demonstrate that the anodization occurred for the conductive regime in which the current depends strongly to the doping; its threshold value is 7 × 10 at/cm for anodization. Finally, the characterization of a classical planar SiC-MOSFET by C-AFM is examined. Results reveal the local oxidation mechanism of the SiC material at the surface of the MOSFET structure. AFM topographies after successive C-AFM measurements show that the local oxide created by anodization is located on both sides of the MOS channel; these areas are the locations of the highly n-type-doped zones. A selective wet chemical etching confirms that the oxide induced by local anodic oxidation is a SiOCH layer.

摘要

通过特定的电原子力显微镜(AFM)模式对碳化硅(SiC)进行表征,对于在纳米尺度上揭示其结构和性质非常有价值。然而,在导电原子力显微镜(C-AFM)测量过程中,在环境气氛中,AFM导电探针周围和下方形成的强电场可能会由于水纳米弯月面的形成而导致SiC表面直接发生阳极氧化。在本文中,通过研究氮(N)掺杂浓度从5×10到10 at/cm的渐变SiC外延掺杂层,对不同掺杂水平的SiC多层膜进行了阳极氧化潜在影响的实验研究。当对AFM探针施加负偏压时,通过AFM探测水纳米弯月面的存在,并用力-距离曲线进行分析。从无极化和有极化时测量的水弯月面破裂距离来看,极化下水弯月面体积增加了两倍。AFM实验结果得到了用于研究氧化物生长的静电模型的支持。考虑到水纳米弯月面、表面氧化层和SiC掺杂水平的存在,开发了一个二维轴对称有限元模型来计算探针接触附近的电场分布和纳米接触处的电流分布。结果表明,在电流强烈依赖于掺杂的导电区域会发生阳极氧化;其阳极氧化的阈值为7×10 at/cm。最后,研究了通过C-AFM对经典平面SiC-MOSFET的表征。结果揭示了SiC材料在MOSFET结构表面的局部氧化机制。连续C-AFM测量后的AFM形貌表明,阳极氧化产生的局部氧化物位于MOS沟道两侧;这些区域是高n型掺杂区的位置。选择性湿法化学蚀刻证实,局部阳极氧化诱导的氧化物是SiOCH层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8e7/10419843/9ce6c2a6d565/materials-16-05401-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验