Suppr超能文献

LIT-Unet:一种用于医学图像分割的轻量级且有效的模型。

LIT-Unet: a lightweight and effective model for medical image segmentation.

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.

Department of Radiology, Xuzhou Central Hospital, Xuzhou, 221009, China.

出版信息

Radiol Phys Technol. 2024 Dec;17(4):878-887. doi: 10.1007/s12194-024-00844-4. Epub 2024 Sep 20.

Abstract

This study aimed to design a simple and efficient automatic segmentation model for medical images, so as to facilitate doctors to make more accurate diagnosis and treatment plan. A hybrid lightweight network LIT-Unet with symmetric encoder-decoder U-shaped architecture is proposed. Synapse multi-organ segmentation dataset and automated cardiac diagnosis challenge (ACDC) dataset were used to test the segmentation performance of the method. Two indexes, Dice similarity coefficient (DSC ↑) and 95% Hausdorff distance (HD95 ↓), were used to evaluate and compare the segmentation ability with the current advanced methods. Ablation experiments were conducted to demonstrate the lightweight nature and effectiveness of our model. For Synapse dataset, our model achieves a higher DSC score (80.40%), an improvement of 3.8% over the typical hybrid model (TransUnet). The 95 HD value is low at 20.67%. For ACDC dataset, LIT-Unet achieves the optimal average DSC (%) of 91.84 compared with other networks listed. Compared to patch expanding, the DSC of our model is intuitively improved by 1.62% with the help of deformable token merging (DTM). These results show that the proposed hierarchical LIT-Unet can achieve significant accuracy and is expected to provide a reliable basis for clinical diagnosis and treatment.

摘要

本研究旨在设计一种简单有效的医学图像自动分割模型,以方便医生做出更准确的诊断和治疗计划。提出了一种具有对称编解码器 U 形结构的混合轻量级网络 LIT-Unet。使用 Synapse 多器官分割数据集和自动化心脏诊断挑战 (ACDC) 数据集来测试该方法的分割性能。使用 Dice 相似系数 (DSC↑) 和 95% Hausdorff 距离 (HD95↓) 两个指标来评估和比较与当前先进方法的分割能力。进行了消融实验以证明我们模型的轻量级性质和有效性。对于 Synapse 数据集,我们的模型实现了更高的 DSC 分数 (80.40%),比典型的混合模型 (TransUnet) 提高了 3.8%。95 HD 值低至 20.67%。对于 ACDC 数据集,LIT-Unet 实现了与列出的其他网络相比,最优平均 DSC(%)为 91.84。与补丁扩展相比,在可变形令牌合并 (DTM) 的帮助下,我们的模型的 DSC 直观地提高了 1.62%。这些结果表明,所提出的分层 LIT-Unet 可以达到显著的准确性,有望为临床诊断和治疗提供可靠的依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验