Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125.
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33011-33016. doi: 10.1073/pnas.2017442117. Epub 2020 Dec 10.
The formation of a suite of isoprene-derived hydroxy nitrate (IHN) isomers during the OH-initiated oxidation of isoprene affects both the concentration and distribution of nitrogen oxide free radicals (NO). Experiments performed in an atmospheric simulation chamber suggest that the lifetime of the most abundant isomer, 1,2-IHN, is shortened significantly by a water-mediated process (leading to nitric acid formation), while the lifetime of a similar isomer, 4,3-IHN, is not. Consistent with these chamber studies, NMR kinetic experiments constrain the 1,2-IHN hydrolysis lifetime to less than 10 s in deuterium oxide (DO) at 298 K, whereas the 4,3-IHN isomer has been observed to hydrolyze much less efficiently. These laboratory findings are used to interpret observations of the IHN isomer distribution in ambient air. The IHN isomer ratio (1,2-IHN to 4,3-IHN) in a high NO environment decreases rapidly in the afternoon, which is not explained using known gas-phase chemistry. When simulated with an observationally constrained model, we find that an additional loss process for the 1,2-IHN isomer with a time constant of about 6 h best explains our atmospheric measurements. Using estimates for 1,2-IHN Henry's law constant and atmospheric liquid water volume, we show that condensed-phase hydrolysis of 1,2-IHN can account for this loss process. Simulations from a global chemistry transport model show that the hydrolysis of 1,2-IHN accounts for a substantial fraction of NO lost (and HNO produced), resulting in large impacts on oxidant formation, especially over forested regions.
异戊二烯经 OH 引发氧化生成的一系列异戊烯基羟硝酸盐(IHN)异构体的形成,既影响氮氧化物自由基(NO)的浓度,也影响其分布。在大气模拟室进行的实验表明,最丰富的异构体 1,2-IHN 的寿命由于水介导的过程(导致形成硝酸)而显著缩短,而类似的异构体 4,3-IHN 的寿命则没有。与这些腔室研究一致,NMR 动力学实验将 1,2-IHN 的水解半衰期约束在 298 K 下重水中小于 10 s,而 4,3-IHN 异构体则被观察到水解效率低得多。这些实验室发现用于解释环境空气中 IHN 异构体分布的观测结果。在高 NO 环境中,1,2-IHN 异构体的 IHN 异构体比(1,2-IHN 与 4,3-IHN)在下午迅速下降,这无法用已知的气相化学解释。当用受观测约束的模型进行模拟时,我们发现 1,2-IHN 异构体的附加损失过程,其时间常数约为 6 h,可最好地解释我们的大气测量结果。使用 1,2-IHN 亨利定律常数和大气液态水体积的估计值,我们表明 1,2-IHN 的凝聚相水解可以解释这种损失过程。来自全球化学传输模型的模拟表明,1,2-IHN 的水解导致大量的 NO 损失(并产生 HNO),对氧化剂的形成产生重大影响,特别是在森林地区。