Suppr超能文献

叔异戊二烯硝酸盐的快速水解可有效地从大气中去除 NO。

Rapid hydrolysis of tertiary isoprene nitrate efficiently removes NO from the atmosphere.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125.

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33011-33016. doi: 10.1073/pnas.2017442117. Epub 2020 Dec 10.

Abstract

The formation of a suite of isoprene-derived hydroxy nitrate (IHN) isomers during the OH-initiated oxidation of isoprene affects both the concentration and distribution of nitrogen oxide free radicals (NO). Experiments performed in an atmospheric simulation chamber suggest that the lifetime of the most abundant isomer, 1,2-IHN, is shortened significantly by a water-mediated process (leading to nitric acid formation), while the lifetime of a similar isomer, 4,3-IHN, is not. Consistent with these chamber studies, NMR kinetic experiments constrain the 1,2-IHN hydrolysis lifetime to less than 10 s in deuterium oxide (DO) at 298 K, whereas the 4,3-IHN isomer has been observed to hydrolyze much less efficiently. These laboratory findings are used to interpret observations of the IHN isomer distribution in ambient air. The IHN isomer ratio (1,2-IHN to 4,3-IHN) in a high NO environment decreases rapidly in the afternoon, which is not explained using known gas-phase chemistry. When simulated with an observationally constrained model, we find that an additional loss process for the 1,2-IHN isomer with a time constant of about 6 h best explains our atmospheric measurements. Using estimates for 1,2-IHN Henry's law constant and atmospheric liquid water volume, we show that condensed-phase hydrolysis of 1,2-IHN can account for this loss process. Simulations from a global chemistry transport model show that the hydrolysis of 1,2-IHN accounts for a substantial fraction of NO lost (and HNO produced), resulting in large impacts on oxidant formation, especially over forested regions.

摘要

异戊二烯经 OH 引发氧化生成的一系列异戊烯基羟硝酸盐(IHN)异构体的形成,既影响氮氧化物自由基(NO)的浓度,也影响其分布。在大气模拟室进行的实验表明,最丰富的异构体 1,2-IHN 的寿命由于水介导的过程(导致形成硝酸)而显著缩短,而类似的异构体 4,3-IHN 的寿命则没有。与这些腔室研究一致,NMR 动力学实验将 1,2-IHN 的水解半衰期约束在 298 K 下重水中小于 10 s,而 4,3-IHN 异构体则被观察到水解效率低得多。这些实验室发现用于解释环境空气中 IHN 异构体分布的观测结果。在高 NO 环境中,1,2-IHN 异构体的 IHN 异构体比(1,2-IHN 与 4,3-IHN)在下午迅速下降,这无法用已知的气相化学解释。当用受观测约束的模型进行模拟时,我们发现 1,2-IHN 异构体的附加损失过程,其时间常数约为 6 h,可最好地解释我们的大气测量结果。使用 1,2-IHN 亨利定律常数和大气液态水体积的估计值,我们表明 1,2-IHN 的凝聚相水解可以解释这种损失过程。来自全球化学传输模型的模拟表明,1,2-IHN 的水解导致大量的 NO 损失(并产生 HNO),对氧化剂的形成产生重大影响,特别是在森林地区。

相似文献

1
Rapid hydrolysis of tertiary isoprene nitrate efficiently removes NO from the atmosphere.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33011-33016. doi: 10.1073/pnas.2017442117. Epub 2020 Dec 10.
3
Isoprene Peroxy Radical Dynamics.
J Am Chem Soc. 2017 Apr 19;139(15):5367-5377. doi: 10.1021/jacs.6b12838. Epub 2017 Apr 11.
4
Aqueous-Phase Oxidation of -β-Isoprene Epoxydiol by Hydroxyl Radicals and Its Impact on Atmospheric Isoprene Processing.
J Phys Chem A. 2019 Dec 12;123(49):10599-10608. doi: 10.1021/acs.jpca.9b08836. Epub 2019 Dec 2.
5
Temperature-dependent Henry's law constants of atmospheric organics of biogenic origin.
J Phys Chem A. 2013 Oct 10;117(40):10359-67. doi: 10.1021/jp403603z. Epub 2013 Sep 25.
6
A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry.
Geophys Res Lett. 2022 Jun 16;49(11):e2021GL097366. doi: 10.1029/2021GL097366. Epub 2022 May 26.
7
Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH.
J Phys Chem A. 2016 Mar 10;120(9):1441-51. doi: 10.1021/acs.jpca.5b06532. Epub 2015 Sep 15.
9
Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway.
Environ Sci Technol. 2016 Sep 20;50(18):9872-80. doi: 10.1021/acs.est.6b01872. Epub 2016 Sep 9.
10
Kinetics of the hydrolysis of atmospherically relevant isoprene-derived hydroxy epoxides.
Environ Sci Technol. 2010 Sep 1;44(17):6718-23. doi: 10.1021/es1019228.

引用本文的文献

3
AMORE-Isoprene v1.0: a new reduced mechanism for gas-phase isoprene oxidation.
Geosci Model Dev. 2023 Mar 29;16(6):1801-1821. doi: 10.5194/gmd-16-1801-2023.
4
Increasing Contributions of Temperature-Dependent Oxygenated Organic Aerosol to Summertime Particulate Matter in New York City.
ACS EST Air. 2024 Jan 22;1(2):113-128. doi: 10.1021/acsestair.3c00037. eCollection 2024 Feb 9.
8
A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry.
Geophys Res Lett. 2022 Jun 16;49(11):e2021GL097366. doi: 10.1029/2021GL097366. Epub 2022 May 26.
9
Synthesis and Hydrolysis of Atmospherically Relevant Monoterpene-Derived Organic Nitrates.
Environ Sci Technol. 2021 Nov 2;55(21):14595-14606. doi: 10.1021/acs.est.1c05310. Epub 2021 Oct 20.

本文引用的文献

1
Southeast Atmosphere Studies: learning from model-observation syntheses.
Atmos Chem Phys. 2018;18(4):2615-2651. doi: 10.5194/acp-18-2615-2018. Epub 2018 Feb 22.
3
Why do Models Overestimate Surface Ozone in the Southeastern United States?
Atmos Chem Phys. 2016;16(21):13561-13577. doi: 10.5194/acp-16-13561-2016. Epub 2016 Nov 1.
4
Gas-Phase Reactions of Isoprene and Its Major Oxidation Products.
Chem Rev. 2018 Apr 11;118(7):3337-3390. doi: 10.1021/acs.chemrev.7b00439. Epub 2018 Mar 9.
5
Computational Comparison of Different Reagent Ions in the Chemical Ionization of Oxidized Multifunctional Compounds.
J Phys Chem A. 2018 Jan 11;122(1):269-279. doi: 10.1021/acs.jpca.7b10015. Epub 2017 Dec 22.
6
Isoprene Peroxy Radical Dynamics.
J Am Chem Soc. 2017 Apr 19;139(15):5367-5377. doi: 10.1021/jacs.6b12838. Epub 2017 Apr 11.
7
Rapid deposition of oxidized biogenic compounds to a temperate forest.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E392-401. doi: 10.1073/pnas.1418702112. Epub 2015 Jan 20.
8
Ozone trends across the United States over a period of decreasing NOx and VOC emissions.
Environ Sci Technol. 2015 Jan 6;49(1):186-95. doi: 10.1021/es504514z. Epub 2014 Dec 17.
9
On rates and mechanisms of OH and O3 reactions with isoprene-derived hydroxy nitrates.
J Phys Chem A. 2014 Mar 6;118(9):1622-37. doi: 10.1021/jp4107603. Epub 2014 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验