Suppr超能文献

AMORE-异戊二烯v1.0:一种新的气相异戊二烯氧化简化机理。

AMORE-Isoprene v1.0: a new reduced mechanism for gas-phase isoprene oxidation.

作者信息

Wiser Forwood, Place Bryan K, Sen Siddhartha, Pye Havala O T, Yang Benjamin, Westervelt Daniel M, Henze Daven K, Fiore Arlene M, McNeill V Faye

机构信息

Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.

Office of Research and Development, Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

出版信息

Geosci Model Dev. 2023 Mar 29;16(6):1801-1821. doi: 10.5194/gmd-16-1801-2023.

Abstract

Gas-phase oxidation of isoprene by ozone (O) and the hydroxyl (OH) and nitrate (NO) radicals significantly impacts tropospheric oxidant levels and secondary organic aerosol formation. The most comprehensive and up-to-date chemical mechanism for isoprene oxidation consists of several hundred species and over 800 reactions. Therefore, the computational expense of including the entire mechanism in large-scale atmospheric chemical transport models is usually prohibitive, and most models employ reduced isoprene mechanisms ranging in size from ~ 10 to ~ 200 species. We have developed a new reduced isoprene oxidation mechanism using a directed-graph path-based automated model reduction approach, with minimal manual adjustment of the output mechanism. The approach takes as inputs a full isoprene oxidation mechanism, the environmental parameter space, and a list of priority species which are protected from elimination during the reduction process. Our reduced mechanism, AMORE-Isoprene (where AMORE stands for Automated Model Reduction), consists of 12 species which are unique to the isoprene mechanism as well as 22 reactions. We demonstrate its performance in a box model in comparison with experimental data from the literature and other current isoprene oxidation mechanisms. AMORE-Isoprene's performance with respect to predicting the time evolution of isoprene oxidation products, including isoprene epoxydiols (IEPOX) and formaldehyde, is favorable compared with other similarly sized mechanisms. When AMORE-Isoprene is included in the Community Regional Atmospheric Chemistry Multiphase Mechanism 1.0 (CRACMM1AMORE) in the Community Multiscale Air Quality Model (CMAQ, v5.3.3), O and formaldehyde agreement with Environmental Protection Agency (EPA) Air Quality System observations is improved. O bias is reduced by 3.4ppb under daytime conditions for O concentrations over 50 ppb. Formaldehyde bias is reduced by 0.26 ppb on average for all formaldehyde measurements compared with the base CRACMM1. There was no significant change in computation time between CRACMM1AMORE and the base CRACMM. AMORE-Isoprene shows a 35 % improvement in agreement between simulated IEPOX concentrations and chamber data over the base CRACMM1 mechanism when compared in the Framework for 0-D Atmospheric Modeling (F0AM) box model framework. This work demonstrates a new highly reduced isoprene mechanism and shows the potential value of automated model reduction for complex reaction systems.

摘要

臭氧(O₃)、羟基(OH)和硝酸根(NO₃)自由基对异戊二烯的气相氧化作用,对对流层氧化剂水平和二次有机气溶胶的形成有着重大影响。目前最全面、最新的异戊二烯氧化化学机制包含数百种物质和800多个反应。因此,在大规模大气化学传输模型中纳入整个机制的计算成本通常过高,大多数模型采用规模在约10至约200种物质的简化异戊二烯机制。我们利用基于有向图路径的自动模型简化方法,开发了一种新的简化异戊二烯氧化机制,对输出机制的人工调整极少。该方法将完整的异戊二烯氧化机制、环境参数空间以及在简化过程中受保护不被消除的优先物种列表作为输入。我们的简化机制AMORE - 异戊二烯(其中AMORE代表自动模型简化),由12种异戊二烯机制特有的物质以及22个反应组成。我们在一个箱式模型中展示了它的性能,并与文献中的实验数据以及其他当前的异戊二烯氧化机制进行了比较。与其他规模类似的机制相比,AMORE - 异戊二烯在预测异戊二烯氧化产物(包括异戊二烯环氧二醇(IEPOX)和甲醛)的时间演变方面表现良好。当AMORE - 异戊二烯被纳入社区多尺度空气质量模型(CMAQ,v5.3.3)中的社区区域大气化学多相机制1.0(CRACMM1_AMORE)时,臭氧和甲醛与美国环境保护局(EPA)空气质量系统观测值的一致性得到了改善。在白天条件下,对于浓度超过50 ppb的臭氧,臭氧偏差降低了3.4 ppb。与基础CRACMM1相比,所有甲醛测量值的甲醛偏差平均降低了0.26 ppb。CRACMM1_AMORE与基础CRACMM之间的计算时间没有显著变化。在零维大气建模框架(F0AM)箱式模型框架中进行比较时,与基础CRACMM1机制相比,AMORE - 异戊二烯在模拟IEPOX浓度与腔室数据之间的一致性方面提高了35%。这项工作展示了一种新的高度简化的异戊二烯机制,并显示了自动模型简化对于复杂反应系统的潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b247/11770595/f32277dbf449/nihms-2038935-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验