Suppr超能文献

利用滚环扩增技术对单个细胞外囊泡上的多种蛋白质进行本地化荧光成像,用于癌症诊断。

Localized fluorescent imaging of multiple proteins on individual extracellular vesicles using rolling circle amplification for cancer diagnosis.

机构信息

Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China.

出版信息

J Extracell Vesicles. 2020 Oct;10(1):e12025. doi: 10.1002/jev2.12025. Epub 2020 Nov 11.

Abstract

Extracellular vesicles (EV) have attracted increasing attention as tumour biomarkers due to their unique biological property. However, conventional methods for EV analysis are mainly based on bulk measurements, which masks the EV-to-EV heterogeneity in tumour diagnosis and classification. Herein, a localized fluorescent imaging method (termed Digital Profiling of Proteins on Individual EV, DPPIE) was developed for analysis of multiple proteins on individual EV. In this assay, an anti-CD9 antibody engineered biochip was used to capture EV from clinical plasma sample. Then the captured EV was specifically recognized by multiple DNA aptamers (CD63/EpCAM/MUC1), followed by rolling circle amplification to generate localized fluorescent signals. By-analyzing the heterogeneity of individual EV, we found that the high-dimensional data collected from each individual EV would provide more precise information than bulk measurement (ELISA) and the percent of CD63/EpCAM/MUC1-triple-positive EV in breast cancer patients was significantly higher than that of healthy donors, and this method can achieve an overall accuracy of 91%. Moreover, using DPPIE, we are able to distinguish the EV between lung adenocarcinoma and lung squamous carcinoma patients. This individual EV heterogeneity analysis strategy provides a new way for digging more information on EV to achieve multi-cancer diagnosis and classification.

摘要

细胞外囊泡 (EV) 因其独特的生物学特性而成为肿瘤标志物,受到越来越多的关注。然而,EV 分析的传统方法主要基于批量测量,这掩盖了肿瘤诊断和分类中 EV 间的异质性。在此,开发了一种局部荧光成像方法(称为个体 EV 上的蛋白质数字分析,DPPIE),用于分析个体 EV 上的多种蛋白质。在该测定中,使用抗 CD9 抗体工程化生物芯片从临床血浆样本中捕获 EV。然后,通过多个 DNA 适体(CD63/EpCAM/MUC1)特异性识别捕获的 EV,然后进行滚环扩增以产生局部荧光信号。通过分析个体 EV 的异质性,我们发现,与批量测量(ELISA)相比,从每个个体 EV 收集的高维数据将提供更精确的信息,并且乳腺癌患者中 CD63/EpCAM/MUC1-三阳性 EV 的百分比明显高于健康供体,并且该方法的总体准确率为 91%。此外,使用 DPPIE,我们能够区分肺腺癌和肺鳞癌患者的 EV。这种个体 EV 异质性分析策略为挖掘 EV 上的更多信息以实现多癌种诊断和分类提供了新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f1/7710127/b2c5bea4dac1/JEV2-10-e12025-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验