Suppr超能文献

新型 3D 打印中空微针有助于安全、可靠、信息丰富地从小鼠耳缘液中取样。

Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs.

机构信息

Department of Otolaryngology - Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY 10032, United States.

Department of Mechanical Engineering, Columbia University, New York, NY, United States.

出版信息

Hear Res. 2021 Feb;400:108141. doi: 10.1016/j.heares.2020.108141. Epub 2020 Dec 2.

Abstract

BACKGROUND

Inner ear diagnostics is limited by the inability to atraumatically obtain samples of inner ear fluid. The round window membrane (RWM) is an attractive portal for accessing perilymph samples as it has been shown to heal within one week after the introduction of microperforations. A 1 µL volume of perilymph is adequate for proteome analysis, yet the total volume of perilymph within the scala tympani of the guinea pig is limited to less than 5 µL. This study investigates the safety and reliability of a novel hollow microneedle device to aspirate perilymph samples adequate for proteomic analysis.

METHODS

The guinea pig RWM was accessed via a postauricular surgical approach. 3D-printed hollow microneedles with an outer diameter of 100 µm and an inner diameter of 35 µm were used to perforate the RWM and aspirate 1 µL of perilymph. Two perilymph samples were analyzed by liquid chromatography-mass spectrometry-based quantitative proteomics as part of a preliminary study. Hearing was assessed before and after aspiration using compound action potential (CAP) and distortion product otoacoustic emissions (DPOAE). RWMs were harvested 72 h after aspiration and evaluated for healing using confocal microscopy.

RESULTS

There was no permanent damage to hearing at 72 h after perforation as assessed by CAP (n = 7) and DPOAE (n = 8), and all perforations healed completely within 72 h (n = 8). In the two samples of perilymph analyzed, 620 proteins were detected, including the inner ear protein cochlin, widely recognized as a perilymph marker.

CONCLUSION

Hollow microneedles can facilitate aspiration of perilymph across the RWM at a quality and volume adequate for proteomic analysis without causing permanent anatomic or physiologic dysfunction. Microneedles can mediate safe and effective intracochlear sampling and show great promise for inner ear diagnostics.

摘要

背景

内耳诊断受到无法无创获取内耳液样本的限制。圆窗膜(RWM)是一个有吸引力的进入外淋巴样本的门户,因为已经证明在微穿孔后一周内它可以愈合。1 µL 的外淋巴体积足以进行蛋白质组分析,但豚鼠耳蜗中的总外淋巴体积限制在 5 µL 以内。本研究调查了一种新型空心微针装置抽取足够进行蛋白质组分析的外淋巴样本的安全性和可靠性。

方法

通过耳后手术途径进入豚鼠的 RWM。使用外径为 100 µm、内径为 35 µm 的 3D 打印空心微针刺穿 RWM 并抽吸 1 µL 的外淋巴。作为初步研究的一部分,通过液相色谱-质谱联用定量蛋白质组学分析了两个外淋巴样本。在抽吸前后使用复合动作电位(CAP)和畸变产物耳声发射(DPOAE)评估听力。在抽吸后 72 小时收获 RWM,并使用共聚焦显微镜评估愈合情况。

结果

通过 CAP(n = 7)和 DPOAE(n = 8)评估,穿孔后 72 小时听力无永久性损伤,所有穿孔在 72 小时内完全愈合(n = 8)。在分析的两个外淋巴样本中,检测到 620 种蛋白质,包括被广泛认为是外淋巴标志物的内耳蛋白 cochlin。

结论

空心微针可以在不引起永久性解剖或生理功能障碍的情况下,通过 RWM 抽吸足够质量和体积的外淋巴进行蛋白质组分析。微针可以介导安全有效的内耳内取样,为内耳诊断带来很大的希望。

相似文献

1
Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs.
Hear Res. 2021 Feb;400:108141. doi: 10.1016/j.heares.2020.108141. Epub 2020 Dec 2.
2
3
Impact of Systemic versus Intratympanic Dexamethasone Administration on the Perilymph Proteome.
J Proteome Res. 2021 Aug 6;20(8):4001-4009. doi: 10.1021/acs.jproteome.1c00322. Epub 2021 Jul 22.
4
Anatomical and Functional Consequences of Microneedle Perforation of Round Window Membrane.
Otol Neurotol. 2020 Feb;41(2):e280-e287. doi: 10.1097/MAO.0000000000002491.
5
Microneedles Facilitate Small-Volume Intracochlear Delivery Without Physiologic Injury in Guinea Pigs.
Otol Neurotol. 2023 Jun 1;44(5):513-519. doi: 10.1097/MAO.0000000000003845. Epub 2023 Apr 6.
6
Inner Ear Diagnostics and Drug Delivery via Microneedles.
J Clin Med. 2022 Sep 17;11(18):5474. doi: 10.3390/jcm11185474.
7
In-vitro perforation of the round window membrane via direct 3-D printed microneedles.
Biomed Microdevices. 2018 Jun 8;20(2):47. doi: 10.1007/s10544-018-0287-3.
8
3D-Printed Microneedles Create Precise Perforations in Human Round Window Membrane in Situ.
Otol Neurotol. 2020 Feb;41(2):277-284. doi: 10.1097/MAO.0000000000002480.
9
Effects of experimental round window membrane laceration on the free amino acid profile of perilymph.
Acta Otolaryngol. 1995 Jul;115(4):504-8. doi: 10.3109/00016489509139356.
10
Membrane curvature and connective fiber alignment in guinea pig round window membrane.
Acta Biomater. 2021 Dec;136:343-362. doi: 10.1016/j.actbio.2021.09.036. Epub 2021 Sep 24.

引用本文的文献

1
Polymeric 3D-Printed Microneedle Arrays for Non-Transdermal Drug Delivery and Diagnostics.
Polymers (Basel). 2025 Jul 18;17(14):1982. doi: 10.3390/polym17141982.
2
Hollow microneedles as a flexible dosing control solution for transdermal drug delivery.
Mater Today Bio. 2025 Apr 10;32:101754. doi: 10.1016/j.mtbio.2025.101754. eCollection 2025 Jun.
4
Advancements in Materials for 3D-Printed Microneedle Arrays: Enhancing Performance and Biocompatibility.
Micromachines (Basel). 2024 Nov 28;15(12):1433. doi: 10.3390/mi15121433.
6
3D printed microneedles: revamping transdermal drug delivery systems.
Drug Deliv Transl Res. 2025 Feb;15(2):436-454. doi: 10.1007/s13346-024-01679-7. Epub 2024 Aug 5.
8
Direct laser writing-enabled 3D printing strategies for microfluidic applications.
Lab Chip. 2024 Apr 30;24(9):2371-2396. doi: 10.1039/d3lc00743j.
9
Formulating biopharmaceuticals using three-dimensional printing.
J Pharm Pharm Sci. 2024 Mar 15;27:12797. doi: 10.3389/jpps.2024.12797. eCollection 2024.
10
Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications.
Bioact Mater. 2023 Oct 12;32:222-241. doi: 10.1016/j.bioactmat.2023.09.022. eCollection 2024 Feb.

本文引用的文献

1
A Novel 3D-Printed Head Holder for Guinea Pig Ear Surgery.
Otol Neurotol. 2021 Oct 1;42(9):e1197-e1202. doi: 10.1097/MAO.0000000000003255.
2
Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles.
Drug Deliv Transl Res. 2021 Feb;11(1):214-226. doi: 10.1007/s13346-020-00782-9.
4
Inner ear delivery: Challenges and opportunities.
Laryngoscope Investig Otolaryngol. 2019 Dec 11;5(1):122-131. doi: 10.1002/lio2.336. eCollection 2020 Feb.
5
Inner Ear Proteins as Potential Biomarkers.
Otol Neurotol. 2020 Feb;41(2):145-152. doi: 10.1097/MAO.0000000000002466.
6
Anatomical and Functional Consequences of Microneedle Perforation of Round Window Membrane.
Otol Neurotol. 2020 Feb;41(2):e280-e287. doi: 10.1097/MAO.0000000000002491.
7
3D-Printed Microneedles Create Precise Perforations in Human Round Window Membrane in Situ.
Otol Neurotol. 2020 Feb;41(2):277-284. doi: 10.1097/MAO.0000000000002480.
8
A novel microneedle device for controlled and reliable liquid biopsy of the human inner ear.
Hear Res. 2019 Sep 15;381:107761. doi: 10.1016/j.heares.2019.06.004. Epub 2019 Jun 22.
9
Small molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407.
Colloids Surf B Biointerfaces. 2019 Oct 1;182:110300. doi: 10.1016/j.colsurfb.2019.06.030. Epub 2019 Jul 4.
10
Defining the Inflammatory Microenvironment in the Human Cochlea by Perilymph Analysis: Toward Liquid Biopsy of the Cochlea.
Front Neurol. 2019 Jun 25;10:665. doi: 10.3389/fneur.2019.00665. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验