Institute for Applied Mathematics, National Research Council of Italy, Rome, Italy.
Institute of Aerospace Medicine "A. Di Loreto", Rome, Italy.
BMC Bioinformatics. 2020 Dec 14;21(Suppl 17):508. doi: 10.1186/s12859-020-03763-4.
The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals.
We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions. We then set up a statistical model able to recapitulate the simulated outcomes.
The resulting machine learning model adequately predicts the synthetic dataset and can, therefore, be used as a computationally-cheaper version of the detailed mathematical model, ready to be implemented on mobile devices to allow self-assessment by informed and aware individuals. The computational model used to generate the dataset of this work is available as a web-service at the following address: http://kraken.iac.rm.cnr.it/T2DM .
最近的一个研究项目旨在研究在缺乏熟悉的情况下 2 型糖尿病发病的机制。这导致了一个计算模型的发展,该模型再现了疾病的病因,并模拟了与 2 型糖尿病相关的免疫和代谢改变,这些改变与典型人类个体的临床、生理和行为特征有关。
我们分析了 46170 个虚拟主体的时间过程,这些主体经历了不同的生活方式条件。然后,我们建立了一个能够再现模拟结果的统计模型。
由此产生的机器学习模型能够很好地预测合成数据集,因此可以作为详细数学模型的一种计算成本更低的版本,准备在移动设备上实现,以便知情和有觉悟的个人进行自我评估。用于生成本工作数据集的计算模型可作为网络服务在以下地址获得:http://kraken.iac.rm.cnr.it/T2DM。