Suppr超能文献

高性能 0.55T MRI 系统上的金属标记物和心导管设备的磁化率伪影。

Susceptibility artifacts from metallic markers and cardiac catheterization devices on a high-performance 0.55 T MRI system.

机构信息

Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.

出版信息

Magn Reson Imaging. 2021 Apr;77:14-20. doi: 10.1016/j.mri.2020.12.002. Epub 2020 Dec 9.

Abstract

INTRODUCTION

Visualization of passive devices during MRI-guided catheterizations often relies on a susceptibility artifact from the device itself or added susceptibility markers that impart a unique imaging signature. High-performance low field MRI systems offer reduced RF-induced heating of metallic devices during MRI-guided invasive procedures, but susceptibility artifacts are expected to diminish with field strength, reducing device visualization. In this study, field strength and orientation dependence of artifacts from susceptibility markers and metallic guidewires were evaluated using a prototype high-performance 0.55 T MRI system.

MATERIALS AND METHODS

Artifact volume from nitinol and stainless steel passive susceptibility markers was quantified using histogram analysis of pixel intensities from three-dimensional gradient echo images at 0.55 T, 1.5 T and 3 T. In addition, visibility of commercially available clinical catheterization devices was compared between 0.55 T and 1.5 T using real-time bSSFP in phantoms and in vivo.

RESULTS

A low-tensile strength stainless-steel marker produced field strength- and orientation-dependent artifact size (1.7 cm, 1.95 cm, 2.21 cm at 0.55 T, 1.5 T, 3 T, respectively). Whereas, a high-tensile strength steel marker, of the same alloy, produced field strength- and orientation-independent artifact size (3.35 cm, 3.41 cm, 3.42 cm at 0.55 T, 1.5 T, 3 T, respectively). Visibility of commercially available nitinol guidewires was reduced at 0.55 T, but imaging signature could be maintained using high-susceptibility stainless steel markers.

DISCUSSION AND CONCLUSION

High-susceptibility stainless-steel markers generate field-independent artifacts between 0.55 T, 1.5 T and 3 T, indicating magnetic saturation at fields <0.55 T. Thus, artifact size can be tailored such that interventional devices produce identical imaging signatures across field strengths.

摘要

介绍

在 MRI 引导的导管插入术中,被动设备的可视化通常依赖于设备本身的磁化率伪影或添加的磁化率标记,这些标记赋予设备独特的成像特征。高性能低场 MRI 系统可降低 MRI 引导的侵入性手术过程中金属设备的射频诱导加热,但预计随着场强的降低,磁化率伪影会减少,从而降低设备的可视化程度。在这项研究中,使用原型高性能 0.55 T MRI 系统评估了磁化率标记物和金属导丝的磁场强度和方向依赖性伪影。

材料和方法

使用三维梯度回波图像的像素强度直方图分析,量化了 Nitinol 和不锈钢无源磁化率标记物的伪影体积,该图像分别在 0.55 T、1.5 T 和 3 T 下获得。此外,在体模和体内使用实时 bSSFP 比较了 0.55 T 和 1.5 T 下商业上可获得的临床导管设备的可视性。

结果

低拉伸强度的不锈钢标记物产生了磁场强度和方向依赖性的伪影尺寸(在 0.55 T、1.5 T 和 3 T 下分别为 1.7 cm、1.95 cm 和 2.21 cm)。而相同合金的高拉伸强度钢标记物产生了磁场强度和方向无关的伪影尺寸(在 0.55 T、1.5 T 和 3 T 下分别为 3.35 cm、3.41 cm 和 3.42 cm)。在 0.55 T 下,商业上可获得的 Nitinol 导丝的可视性降低,但可以使用高磁化率不锈钢标记物维持其成像特征。

讨论和结论

高磁化率不锈钢标记物在 0.55 T、1.5 T 和 3 T 之间产生了磁场独立的伪影,表明在<0.55 T 的磁场下发生了磁饱和。因此,可以调整伪影的大小,以使介入设备在整个场强范围内产生相同的成像特征。

相似文献

1
Susceptibility artifacts from metallic markers and cardiac catheterization devices on a high-performance 0.55 T MRI system.
Magn Reson Imaging. 2021 Apr;77:14-20. doi: 10.1016/j.mri.2020.12.002. Epub 2020 Dec 9.
2
Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI.
Radiology. 2019 Nov;293(2):384-393. doi: 10.1148/radiol.2019190452. Epub 2019 Oct 1.
3
Pediatric cardiovascular interventional devices: effect on CMR images at 1.5 and 3 Tesla.
J Cardiovasc Magn Reson. 2013 Jun 19;15(1):54. doi: 10.1186/1532-429X-15-54.
6
Evaluation of MR issues for the latest standard brands of orthopedic metal implants: plates and screws.
Eur J Radiol. 2015 Mar;84(3):450-457. doi: 10.1016/j.ejrad.2014.12.001. Epub 2014 Dec 16.
7
Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images.
Acta Biomater. 2013 Sep;9(9):8433-9. doi: 10.1016/j.actbio.2013.05.017. Epub 2013 May 24.
9
Predictability of magnetic susceptibility artifacts from metallic orthodontic appliances in magnetic resonance imaging.
J Orofac Orthop. 2015 Jan;76(1):14-29. doi: 10.1007/s00056-014-0258-0. Epub 2014 Nov 26.
10
Metallic spinal artifacts in magnetic resonance imaging.
Spine (Phila Pa 1976). 1994 Jun 1;19(11):1237-42. doi: 10.1097/00007632-199405310-00008.

引用本文的文献

1
Intraluminal MRI and interventions: Innovation and application.
EngMedicine. 2025 Mar;2(1). doi: 10.1016/j.engmed.2024.100044. Epub 2024 Nov 25.
3
Assessment of the Diagnostic Efficacy of Low-Field Magnetic Resonance Imaging: A Systematic Review.
Diagnostics (Basel). 2024 Jul 19;14(14):1564. doi: 10.3390/diagnostics14141564.
4
Interventional device tracking under MRI via alternating current controlled inhomogeneities.
Magn Reson Med. 2024 Jul;92(1):346-360. doi: 10.1002/mrm.30031. Epub 2024 Feb 23.
5
New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal.
MAGMA. 2024 Feb;37(1):1-14. doi: 10.1007/s10334-023-01123-w. Epub 2023 Oct 30.
6
Cardiac MRI at Low Field Strengths.
J Magn Reson Imaging. 2024 Feb;59(2):412-430. doi: 10.1002/jmri.28890. Epub 2023 Aug 2.
7
Usability of magnetic resonance images acquired at a novel low-field 0.55 T scanner for brain radiotherapy treatment planning.
Phys Imaging Radiat Oncol. 2023 Jan 13;25:100412. doi: 10.1016/j.phro.2023.100412. eCollection 2023 Jan.
8
Current State of MRI-Guided Endovascular Arterial Interventions: A Systematic Review of Preclinical and Clinical Studies.
J Magn Reson Imaging. 2022 Nov;56(5):1322-1342. doi: 10.1002/jmri.28205. Epub 2022 Apr 14.
9
Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems.
Eur Heart J Cardiovasc Imaging. 2022 Jun 1;23(6):e246-e260. doi: 10.1093/ehjci/jeab286.
10
A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.55T.
Magn Reson Med. 2021 Sep;86(3):1786-1801. doi: 10.1002/mrm.28804. Epub 2021 Apr 16.

本文引用的文献

1
Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI.
Radiology. 2019 Nov;293(2):384-393. doi: 10.1148/radiol.2019190452. Epub 2019 Oct 1.
3
Interventional CMR: Clinical applications and future directions.
Curr Cardiol Rep. 2015 May;17(5):31. doi: 10.1007/s11886-015-0580-1.
5
A controllable susceptibility marker for passive device tracking.
Magn Reson Med. 2014 Jul;72(1):269-75. doi: 10.1002/mrm.24899. Epub 2013 Aug 6.
6
Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans.
Europace. 2013 Jan;15(1):101-8. doi: 10.1093/europace/eus230. Epub 2012 Jul 31.
8
Interventional cardiovascular magnetic resonance: still tantalizing.
J Cardiovasc Magn Reson. 2008 Dec 29;10(1):62. doi: 10.1186/1532-429X-10-62.
10
Magnetic resonance imaging of microstructure transition in stainless steel.
Magn Reson Imaging. 2006 Jun;24(5):663-72. doi: 10.1016/j.mri.2005.10.014. Epub 2006 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验