Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
Magn Reson Imaging. 2021 Apr;77:14-20. doi: 10.1016/j.mri.2020.12.002. Epub 2020 Dec 9.
Visualization of passive devices during MRI-guided catheterizations often relies on a susceptibility artifact from the device itself or added susceptibility markers that impart a unique imaging signature. High-performance low field MRI systems offer reduced RF-induced heating of metallic devices during MRI-guided invasive procedures, but susceptibility artifacts are expected to diminish with field strength, reducing device visualization. In this study, field strength and orientation dependence of artifacts from susceptibility markers and metallic guidewires were evaluated using a prototype high-performance 0.55 T MRI system.
Artifact volume from nitinol and stainless steel passive susceptibility markers was quantified using histogram analysis of pixel intensities from three-dimensional gradient echo images at 0.55 T, 1.5 T and 3 T. In addition, visibility of commercially available clinical catheterization devices was compared between 0.55 T and 1.5 T using real-time bSSFP in phantoms and in vivo.
A low-tensile strength stainless-steel marker produced field strength- and orientation-dependent artifact size (1.7 cm, 1.95 cm, 2.21 cm at 0.55 T, 1.5 T, 3 T, respectively). Whereas, a high-tensile strength steel marker, of the same alloy, produced field strength- and orientation-independent artifact size (3.35 cm, 3.41 cm, 3.42 cm at 0.55 T, 1.5 T, 3 T, respectively). Visibility of commercially available nitinol guidewires was reduced at 0.55 T, but imaging signature could be maintained using high-susceptibility stainless steel markers.
High-susceptibility stainless-steel markers generate field-independent artifacts between 0.55 T, 1.5 T and 3 T, indicating magnetic saturation at fields <0.55 T. Thus, artifact size can be tailored such that interventional devices produce identical imaging signatures across field strengths.
在 MRI 引导的导管插入术中,被动设备的可视化通常依赖于设备本身的磁化率伪影或添加的磁化率标记,这些标记赋予设备独特的成像特征。高性能低场 MRI 系统可降低 MRI 引导的侵入性手术过程中金属设备的射频诱导加热,但预计随着场强的降低,磁化率伪影会减少,从而降低设备的可视化程度。在这项研究中,使用原型高性能 0.55 T MRI 系统评估了磁化率标记物和金属导丝的磁场强度和方向依赖性伪影。
使用三维梯度回波图像的像素强度直方图分析,量化了 Nitinol 和不锈钢无源磁化率标记物的伪影体积,该图像分别在 0.55 T、1.5 T 和 3 T 下获得。此外,在体模和体内使用实时 bSSFP 比较了 0.55 T 和 1.5 T 下商业上可获得的临床导管设备的可视性。
低拉伸强度的不锈钢标记物产生了磁场强度和方向依赖性的伪影尺寸(在 0.55 T、1.5 T 和 3 T 下分别为 1.7 cm、1.95 cm 和 2.21 cm)。而相同合金的高拉伸强度钢标记物产生了磁场强度和方向无关的伪影尺寸(在 0.55 T、1.5 T 和 3 T 下分别为 3.35 cm、3.41 cm 和 3.42 cm)。在 0.55 T 下,商业上可获得的 Nitinol 导丝的可视性降低,但可以使用高磁化率不锈钢标记物维持其成像特征。
高磁化率不锈钢标记物在 0.55 T、1.5 T 和 3 T 之间产生了磁场独立的伪影,表明在<0.55 T 的磁场下发生了磁饱和。因此,可以调整伪影的大小,以使介入设备在整个场强范围内产生相同的成像特征。