Suppr超能文献

声化学与机械化学技术在生物质催化转化中的应用。

Sono- and mechanochemical technologies in the catalytic conversion of biomass.

机构信息

Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Giuria 9, 10125 Turin, Italy.

Dipartimento di Chimica, University of Turin, Via P. Giuria 7, 10125 Turin, Italy.

出版信息

Chem Soc Rev. 2021 Feb 15;50(3):1785-1812. doi: 10.1039/d0cs01152e.

Abstract

This tutorial review focuses on the valorisation of biomass by sonochemical and mechanochemical activation. Although several of the examples reported herein rely on the use of model compounds rather than native feedstocks, the conversion of lignocellulosic fractions into valuable compounds is a great opportunity with which to more sustainably exploit natural resources, from environmental, economic and social points of view. The use of non-conventional technologies that generate high-energy microenvironments can improve biomass deconstruction and the accessibility of catalysts, granting higher conversion and selectivity. The critical parameters in sonochemical and mechanochemical conversions have been analysed together with the most common devices and reactors, and the potential of sonocatalysis and mechanocatalysis as emerging tools for both catalytic and biocatalytic biomass conversion will be discussed. A SWOT (strengths, weaknesses, opportunities and threats) analysis will provide an overview of the effective feasibility of these approaches in a biorefinery context. Although these technologies offer indisputable advantages (mild reaction conditions, enhanced reaction rates and mass transfer), their mechanisms and the systematic adjustment of parameters to give optimal outcomes still require further investigation, which will pave the way for reproducible and scalable experiments. Indeed, process scale-up can be accomplished both in batch and flow mode. However, results are not particularly predictable, despite the accurate control of instrumental variables, because of the variability found in biomass sources and the complexity inherent in structures.

摘要

本教程综述重点介绍了通过声化学和机械化学活化来实现生物质的增值利用。虽然本文报道的许多实例都依赖于模型化合物的使用,而不是天然原料,但从环境、经济和社会角度来看,将木质纤维素转化为有价值的化合物是更可持续地利用自然资源的绝佳机会。使用能够产生高能微环境的非常规技术可以改善生物质的解构和催化剂的可及性,从而提高转化率和选择性。本文分析了声化学和机械化学转化中的关键参数,以及最常见的设备和反应器,并讨论了超声催化和机械催化作为催化和生物催化生物质转化的新兴工具的潜力。SWOT(优势、劣势、机会和威胁)分析将概述这些方法在生物炼制背景下的有效可行性。尽管这些技术具有无可争议的优势(温和的反应条件、增强的反应速率和传质),但它们的机制和参数的系统调整以获得最佳结果仍需要进一步研究,这将为可重复和可扩展的实验铺平道路。实际上,无论是分批还是连续操作,都可以实现过程放大。然而,尽管可以精确控制仪器变量,但由于生物质来源的可变性和固有结构的复杂性,结果并不特别具有可预测性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验