Suppr超能文献

非小细胞肺癌中表皮生长因子受体突变的临床和影像学预测因素

Clinical and radiological predictors of epidermal growth factor receptor mutation in nonsmall cell lung cancer.

作者信息

Dang Yutao, Wang Ruotian, Qian Kun, Lu Jie, Zhang Haixiang, Zhang Yi

机构信息

Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.

Department of Thoracic Surgery, Shijingshan Hospital of Beijing City, Shijingshan Teaching Hospital of Capital Medical University, Beijing, China.

出版信息

J Appl Clin Med Phys. 2021 Jan;22(1):271-280. doi: 10.1002/acm2.13107. Epub 2020 Dec 12.

Abstract

PURPOSE

To determine the prognostic factors of epidermal growth factor receptor (EGFR) mutation status in a group of patients with nonsmall cell lung cancer (NSCLC) by analyzing their clinical and radiological features.

MATERIALS AND METHODS

Patients with NSCLC who underwent EGFR mutation detection between 2014 and 2017 were included. Clinical features and general imaging features were collected, and radiomic features were extracted from CT data by 3D Slicer software. Prognostic factors of EGFR mutation status were selected by least absolute shrinkage and selection operator (LASSO) logistic regression analysis, and receiver operating characteristic (ROC) curves were drawn for each prediction model of EGFR mutation.

RESULTS

A total of 118 patients were enrolled in this study. The smoking index (P = 0.028), pleural retraction (P = 0.041), and three radiomic features were significantly associated with EGFR mutation status. The areas under the ROC curve (AUCs) for prediction models of clinical features, general imaging features, and radiomic features were 0.284, 0.703, and 0.815, respectively, and the AUC for the combined prediction model of the three models was 0.894. Finally, a nomogram was established for individualized EGFR mutation prediction.

CONCLUSIONS

The combination of radiomic features with clinical features and general imaging features can enable discrimination of EGFR mutation status better than the use of any group of features alone. Our study may help develop a noninvasive biomarker to identify EGFR mutation status by using a combination of the three group features.

摘要

目的

通过分析一组非小细胞肺癌(NSCLC)患者的临床和影像学特征,确定表皮生长因子受体(EGFR)突变状态的预后因素。

材料与方法

纳入2014年至2017年间接受EGFR突变检测的NSCLC患者。收集临床特征和一般影像学特征,并通过3D Slicer软件从CT数据中提取影像组学特征。采用最小绝对收缩和选择算子(LASSO)逻辑回归分析选择EGFR突变状态的预后因素,并为每个EGFR突变预测模型绘制受试者操作特征(ROC)曲线。

结果

本研究共纳入118例患者。吸烟指数(P = 0.028)、胸膜凹陷(P = 0.041)以及三个影像组学特征与EGFR突变状态显著相关。临床特征、一般影像学特征和影像组学特征预测模型的ROC曲线下面积(AUC)分别为0.284、0.703和0.815,三个模型联合预测模型的AUC为0.894。最后,建立了用于个体化EGFR突变预测的列线图。

结论

影像组学特征与临床特征和一般影像学特征相结合,比单独使用任何一组特征能更好地鉴别EGFR突变状态。我们的研究可能有助于开发一种非侵入性生物标志物,通过结合这三组特征来识别EGFR突变状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4491/7856515/f3d87fe7bbc8/ACM2-22-271-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验