Suppr超能文献

社交媒体中灾难图像的视觉情感分析。

Visual Sentiment Analysis from Disaster Images in Social Media.

机构信息

SimulaMet, 0167 Oslo, Norway.

Information and Computing Technology Division, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar.

出版信息

Sensors (Basel). 2022 May 10;22(10):3628. doi: 10.3390/s22103628.

Abstract

The increasing popularity of social networks and users' tendency towards sharing their feelings, expressions, and opinions in text, visual, and audio content have opened new opportunities and challenges in sentiment analysis. While sentiment analysis of text streams has been widely explored in the literature, sentiment analysis from images and videos is relatively new. This article focuses on visual sentiment analysis in a societally important domain, namely disaster analysis in social media. To this aim, we propose a deep visual sentiment analyzer for disaster-related images, covering different aspects of visual sentiment analysis starting from data collection, annotation, model selection, implementation, and evaluations. For data annotation and analyzing people's sentiments towards natural disasters and associated images in social media, a crowd-sourcing study has been conducted with a large number of participants worldwide. The crowd-sourcing study resulted in a large-scale benchmark dataset with four different sets of annotations, each aiming at a separate task. The presented analysis and the associated dataset, which is made public, will provide a baseline/benchmark for future research in the domain. We believe the proposed system can contribute toward more livable communities by helping different stakeholders, such as news broadcasters, humanitarian organizations, as well as the general public.

摘要

社交媒体的日益普及以及用户倾向于在文本、视觉和音频内容中分享他们的感受、表达和意见,这为情感分析开辟了新的机遇和挑战。虽然文献中已经广泛探讨了文本流的情感分析,但从图像和视频中进行情感分析相对较新。本文专注于社会重要领域的视觉情感分析,即社交媒体中的灾难分析。为此,我们提出了一种用于灾难相关图像的深度视觉情感分析器,涵盖了从数据收集、注释、模型选择、实现和评估开始的视觉情感分析的不同方面。为了对人们在社交媒体中对自然灾害和相关图像的情感进行数据注释和分析,我们在全球范围内进行了一项大规模的众包研究,有大量参与者参与其中。众包研究产生了一个大规模的基准数据集,其中包含四组不同的注释,每组都针对一个单独的任务。所提出的分析和相关数据集是公开的,将为该领域的未来研究提供基准/基准。我们相信,通过帮助新闻广播公司、人道主义组织以及普通大众等不同利益相关者,所提出的系统可以为更宜居的社区做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3279/9146152/a975127e7c96/sensors-22-03628-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验