Suppr超能文献

机器人视觉伺服智能感知系统在复杂工业环境中的应用。

Intelligent Perception System of Robot Visual Servo for Complex Industrial Environment.

机构信息

Guangzhou College of South China University of Technology School of Electrical Engineering, Guangzhou 510006, China.

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China.

出版信息

Sensors (Basel). 2020 Dec 11;20(24):7121. doi: 10.3390/s20247121.

Abstract

Robot control based on visual information perception is a hot topic in the industrial robot domain and makes robots capable of doing more things in a complex environment. However, complex visual background in an industrial environment brings great difficulties in recognizing the target image, especially when a target is small or far from the sensor. Therefore, target recognition is the first problem that should be addressed in a visual servo system. This paper considers common complex constraints in industrial environments and proposes a You Only Look Once Version 2 Region of Interest (YOLO-v2-ROI) neural network image processing algorithm based on machine learning. The proposed algorithm combines the advantages of YOLO (You Only Look Once) rapid detection with effective identification of ROI (Region of Interest) pooling structure, which can quickly locate and identify different objects in different fields of view. This method can also lead the robot vision system to recognize and classify a target object automatically, improve robot vision system efficiency, avoid blind movement, and reduce the calculation load. The proposed algorithm is verified by experiments. The experimental result shows that the learning algorithm constructed in this paper has real-time image-detection speed and demonstrates strong adaptability and recognition ability when processing images with complex backgrounds, such as different backgrounds, lighting, or perspectives. In addition, this algorithm can also effectively identify and locate visual targets, which improves the environmental adaptability of a visual servo system.

摘要

基于视觉信息感知的机器人控制是工业机器人领域的一个热门话题,使机器人能够在复杂环境中完成更多的任务。然而,工业环境中复杂的视觉背景给目标图像的识别带来了很大的困难,尤其是当目标较小或远离传感器时。因此,目标识别是视觉伺服系统首先要解决的问题。本文考虑了工业环境中的常见复杂约束条件,提出了一种基于机器学习的 You Only Look Once Version 2 Region of Interest(YOLO-v2-ROI)神经网络图像处理算法。所提出的算法结合了 YOLO(You Only Look Once)快速检测的优点和 ROI(Region of Interest)池化结构的有效识别,能够快速定位和识别不同视场中的不同物体。该方法还可以引导机器人视觉系统自动识别和分类目标对象,提高机器人视觉系统的效率,避免盲目运动,并降低计算负载。通过实验验证了该算法。实验结果表明,本文构建的学习算法具有实时图像检测速度,在处理具有复杂背景(如不同背景、光照或视角)的图像时具有较强的适应性和识别能力。此外,该算法还可以有效地识别和定位视觉目标,提高了视觉伺服系统的环境适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1688/7763247/af5f8b89f737/sensors-20-07121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验