Jeon Woosung, Kim Dongsup
Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Sci Rep. 2020 Dec 16;10(1):22104. doi: 10.1038/s41598-020-78537-2.
We developed a computational method named Molecule Optimization by Reinforcement Learning and Docking (MORLD) that automatically generates and optimizes lead compounds by combining reinforcement learning and docking to develop predicted novel inhibitors. This model requires only a target protein structure and directly modifies ligand structures to obtain higher predicted binding affinity for the target protein without any other training data. Using MORLD, we were able to generate potential novel inhibitors against discoidin domain receptor 1 kinase (DDR1) in less than 2 days on a moderate computer. We also demonstrated MORLD's ability to generate predicted novel agonists for the D dopamine receptor (D4DR) from scratch without virtual screening on an ultra large compound library. The free web server is available at http://morld.kaist.ac.kr .
我们开发了一种名为“基于强化学习和对接的分子优化”(MORLD)的计算方法,该方法通过结合强化学习和对接来自动生成和优化先导化合物,以开发预测的新型抑制剂。该模型仅需要目标蛋白结构,无需任何其他训练数据,直接修改配体结构以获得对目标蛋白更高的预测结合亲和力。使用MORLD,我们能够在一台普通计算机上不到2天的时间内生成针对盘状结构域受体1激酶(DDR1)的潜在新型抑制剂。我们还展示了MORLD在没有对超大型化合物库进行虚拟筛选的情况下从头生成D4多巴胺受体(D4DR)预测新型激动剂的能力。免费网络服务器可在http://morld.kaist.ac.kr获取。