Suppr超能文献

利用强化学习和对接技术进行自主分子生成以开发潜在的新型抑制剂。

Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors.

作者信息

Jeon Woosung, Kim Dongsup

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

出版信息

Sci Rep. 2020 Dec 16;10(1):22104. doi: 10.1038/s41598-020-78537-2.

Abstract

We developed a computational method named Molecule Optimization by Reinforcement Learning and Docking (MORLD) that automatically generates and optimizes lead compounds by combining reinforcement learning and docking to develop predicted novel inhibitors. This model requires only a target protein structure and directly modifies ligand structures to obtain higher predicted binding affinity for the target protein without any other training data. Using MORLD, we were able to generate potential novel inhibitors against discoidin domain receptor 1 kinase (DDR1) in less than 2 days on a moderate computer. We also demonstrated MORLD's ability to generate predicted novel agonists for the D dopamine receptor (D4DR) from scratch without virtual screening on an ultra large compound library. The free web server is available at http://morld.kaist.ac.kr .

摘要

我们开发了一种名为“基于强化学习和对接的分子优化”(MORLD)的计算方法,该方法通过结合强化学习和对接来自动生成和优化先导化合物,以开发预测的新型抑制剂。该模型仅需要目标蛋白结构,无需任何其他训练数据,直接修改配体结构以获得对目标蛋白更高的预测结合亲和力。使用MORLD,我们能够在一台普通计算机上不到2天的时间内生成针对盘状结构域受体1激酶(DDR1)的潜在新型抑制剂。我们还展示了MORLD在没有对超大型化合物库进行虚拟筛选的情况下从头生成D4多巴胺受体(D4DR)预测新型激动剂的能力。免费网络服务器可在http://morld.kaist.ac.kr获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b6/7744578/1d3518078d4d/41598_2020_78537_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验