National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, People's Republic of China.
J Neural Eng. 2018 Aug;15(4):046025. doi: 10.1088/1741-2552/aac605. Epub 2018 May 18.
Electroencephalography (EEG) is a non-linear and non-stationary process, as a result, its features are unstable and often vary in quality across trials, which poses significant challenges to brain-computer interfaces (BCIs). One remedy to this problem is to adaptively collect sufficient EEG evidence using dynamic stopping (DS) strategies. The high-speed steady-state visual evoked potential (SSVEP)-based BCI has experienced tremendous progress in recent years. This study aims to further improve the high-speed SSVEP-based BCI by incorporating the DS strategy.
This study involves the development of two different DS strategies for a high-speed SSVEP-based BCI, which were based on the Bayes estimation and the discriminant analysis, respectively. To evaluate their performance, they were compared with the conventional fixed stopping (FS) strategy using simulated online tests on both our collected data and a public dataset. Two most effective SSVEP recognition methods were used for comparison, including the extended canonical correlation analysis (CCA) and the ensemble task-related component analysis (TRCA).
The DS strategies achieved significantly higher information transfer rates (ITRs) than the FS strategy for both datasets, improving 9.78% for the Bayes-based DS and 6.7% for the discriminant-based DS. Specifically, the discriminant-based DS strategy using ensemble TRCA performed the best for our collected data, reaching an average ITR of 353.3 ± 67.1 bits min with a peak of 460 bits min. The Bayes-based DS strategy using ensemble TRCA had the highest ITR for the public dataset, reaching an average of 230.2 ± 65.8 bits min with a peak of 304.1 bits min.
This study demonstrates that the proposed dynamic stopping strategies can further improve the performance of a SSVEP-based BCI, and hold promise for practical applications.
脑电图(EEG)是一个非线性和非平稳的过程,因此,其特征不稳定,经常在试验之间变化,这对脑机接口(BCI)提出了重大挑战。解决这个问题的一种方法是使用动态停止(DS)策略自适应地收集足够的 EEG 证据。基于高速稳态视觉诱发电位(SSVEP)的 BCI 在近年来取得了巨大的进展。本研究旨在通过纳入 DS 策略进一步提高基于高速 SSVEP 的 BCI。
本研究为基于高速 SSVEP 的 BCI 开发了两种不同的 DS 策略,分别基于贝叶斯估计和判别分析。为了评估它们的性能,我们使用模拟在线测试在我们自己收集的数据和公共数据集上对它们与传统的固定停止(FS)策略进行了比较。使用两种最有效的 SSVEP 识别方法进行比较,包括扩展典型相关分析(CCA)和集成任务相关成分分析(TRCA)。
DS 策略在两个数据集上均比 FS 策略获得了显著更高的信息传输率(ITR),基于贝叶斯的 DS 提高了 9.78%,基于判别分析的 DS 提高了 6.7%。具体来说,基于判别分析的 DS 策略与集成 TRCA 一起使用,在我们自己收集的数据中表现最好,平均 ITR 为 353.3 ± 67.1 bit min,峰值为 460 bit min。基于贝叶斯的 DS 策略与集成 TRCA 一起使用在公共数据集上具有最高的 ITR,平均为 230.2 ± 65.8 bit min,峰值为 304.1 bit min。
本研究表明,所提出的动态停止策略可以进一步提高基于 SSVEP 的 BCI 的性能,并且在实际应用中具有前景。