Suppr超能文献

基于深度学习的 CAR-T 细胞免疫突触的三维无标记跟踪和分析。

Deep-learning-based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells.

机构信息

Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.

KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea.

出版信息

Elife. 2020 Dec 17;9:e49023. doi: 10.7554/eLife.49023.

Abstract

The immunological synapse (IS) is a cell-cell junction between a T cell and a professional antigen-presenting cell. Since the IS formation is a critical step for the initiation of an antigen-specific immune response, various live-cell imaging techniques, most of which rely on fluorescence microscopy, have been used to study the dynamics of IS. However, the inherent limitations associated with the fluorescence-based imaging, such as photo-bleaching and photo-toxicity, prevent the long-term assessment of dynamic changes of IS with high frequency. Here, we propose and experimentally validate a label-free, volumetric, and automated assessment method for IS dynamics using a combinational approach of optical diffraction tomography and deep learning-based segmentation. The proposed method enables an automatic and quantitative spatiotemporal analysis of IS kinetics of morphological and biochemical parameters associated with IS dynamics, providing a new option for immunological research.

摘要

免疫突触(IS)是 T 细胞与专业抗原呈递细胞之间的细胞-细胞连接。由于 IS 的形成是启动抗原特异性免疫反应的关键步骤,因此已经使用了各种活细胞成像技术,其中大多数依赖于荧光显微镜来研究 IS 的动态。然而,与荧光成像相关的固有局限性,如光漂白和光毒性,阻止了对 IS 动态的高频长期评估。在这里,我们提出并通过光学衍射层析和基于深度学习的分割相结合的方法,实验验证了一种用于 IS 动力学的无标记、体积和自动评估方法。该方法能够自动、定量地分析与 IS 动力学相关的形态和生化参数的 IS 动力学的时空变化,为免疫研究提供了新的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7400/7817186/63432eee7bd6/elife-49023-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验