Suppr超能文献

基于深度渐进零中心残差学习的高光谱图像超分辨率

Hyperspectral Image Super-Resolution via Deep Progressive Zero-Centric Residual Learning.

作者信息

Zhu Zhiyu, Hou Junhui, Chen Jie, Zeng Huanqiang, Zhou Jiantao

出版信息

IEEE Trans Image Process. 2021;30:1423-1438. doi: 10.1109/TIP.2020.3044214. Epub 2020 Dec 29.

Abstract

This paper explores the problem of hyperspectral image (HSI) super-resolution that merges a low resolution HSI (LR-HSI) and a high resolution multispectral image (HR-MSI). The cross-modality distribution of the spatial and spectral information makes the problem challenging. Inspired by the classic wavelet decomposition-based image fusion, we propose a novel lightweight deep neural network-based framework, namely progressive zero-centric residual network (PZRes-Net), to address this problem efficiently and effectively. Specifically, PZRes-Net learns a high resolution and zero-centric residual image, which contains high-frequency spatial details of the scene across all spectral bands, from both inputs in a progressive fashion along the spectral dimension. And the resulting residual image is then superimposed onto the up-sampled LR-HSI in a mean-value invariant manner, leading to a coarse HR-HSI, which is further refined by exploring the coherence across all spectral bands simultaneously. To learn the residual image efficiently and effectively, we employ spectral-spatial separable convolution with dense connections. In addition, we propose zero-mean normalization implemented on the feature maps of each layer to realize the zero-mean characteristic of the residual image. Extensive experiments over both real and synthetic benchmark datasets demonstrate that our PZRes-Net outperforms state-of-the-art methods to a significant extent in terms of both 4 quantitative metrics and visual quality, e.g., our PZRes-Net improves the PSNR more than 3dB, while saving 2.3× parameters and consuming 15× less FLOPs. The code is publicly available at https://github.com/zbzhzhy/PZRes-Net.

摘要

本文探讨了将低分辨率高光谱图像(LR-HSI)和高分辨率多光谱图像(HR-MSI)进行融合的高光谱图像(HSI)超分辨率问题。空间和光谱信息的跨模态分布使得该问题具有挑战性。受基于经典小波分解的图像融合启发,我们提出了一种基于轻量级深度神经网络的新型框架,即渐进零中心残差网络(PZRes-Net),以高效且有效地解决此问题。具体而言,PZRes-Net以渐进方式沿着光谱维度从两个输入中学习一个高分辨率且零中心的残差图像,该图像包含所有光谱波段场景的高频空间细节。然后,将所得的残差图像以均值不变的方式叠加到上采样后的LR-HSI上,得到一个粗糙的HR-HSI,通过同时探索所有光谱波段之间的相关性对其进行进一步细化。为了高效且有效地学习残差图像,我们采用具有密集连接的光谱-空间可分离卷积。此外,我们提出在每一层的特征图上实现零均值归一化,以实现残差图像的零均值特性。在真实和合成基准数据集上进行的大量实验表明,我们的PZRes-Net在4个定量指标和视觉质量方面均显著优于现有方法,例如,我们的PZRes-Net将PSNR提高了3dB以上,同时节省了2.3倍的参数且FLOP消耗减少了15倍。代码可在https://github.com/zbzhzhy/PZRes-Net上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验