Suppr超能文献

通过在 AWS DeepLens 上实施基于云的可扩展迁移学习,实现实时植物健康评估。

Real-time plant health assessment via implementing cloud-based scalable transfer learning on AWS DeepLens.

机构信息

The Institute for Sustainable Industries and Liveable Cities (ISILC), College of Engineering and Science, Victoria University, Melbourne, Australia.

Department of Electrical Engineering, Namal Institute Mianwali, Mianwali, Pakistan.

出版信息

PLoS One. 2020 Dec 17;15(12):e0243243. doi: 10.1371/journal.pone.0243243. eCollection 2020.

Abstract

The control of plant leaf diseases is crucial as it affects the quality and production of plant species with an effect on the economy of any country. Automated identification and classification of plant leaf diseases is, therefore, essential for the reduction of economic losses and the conservation of specific species. Various Machine Learning (ML) models have previously been proposed to detect and identify plant leaf disease; however, they lack usability due to hardware sophistication, limited scalability and realistic use inefficiency. By implementing automatic detection and classification of leaf diseases in fruit trees (apple, grape, peach and strawberry) and vegetable plants (potato and tomato) through scalable transfer learning on Amazon Web Services (AWS) SageMaker and importing it into AWS DeepLens for real-time functional usability, our proposed DeepLens Classification and Detection Model (DCDM) addresses such limitations. Scalability and ubiquitous access to our approach is provided by cloud integration. Our experiments on an extensive image data set of healthy and unhealthy fruit trees and vegetable plant leaves showed 98.78% accuracy with a real-time diagnosis of diseases of plant leaves. To train DCDM deep learning model, we used forty thousand images and then evaluated it on ten thousand images. It takes an average of 0.349s to test an image for disease diagnosis and classification using AWS DeepLens, providing the consumer with disease information in less than a second.

摘要

控制植物叶片病害至关重要,因为它会影响植物物种的质量和产量,从而影响任何国家的经济。因此,自动识别和分类植物叶片病害对于减少经济损失和保护特定物种至关重要。以前已经提出了各种机器学习 (ML) 模型来检测和识别植物叶片病害;然而,由于硬件复杂、可扩展性有限以及实际使用效率低下,它们缺乏可用性。通过在亚马逊网络服务 (AWS) SageMaker 上实施可扩展的迁移学习,并将其导入 AWS DeepLens 以实现实时功能可用性,从而自动检测和分类水果树(苹果、葡萄、桃和草莓)和蔬菜植物(土豆和番茄)中的叶片病害,我们提出的 DeepLens 分类和检测模型 (DCDM) 解决了这些限制。通过云集成提供了可扩展性和普遍访问我们方法的机会。我们在一个广泛的健康和不健康的水果树和蔬菜植物叶片图像数据集上进行的实验表明,准确率为 98.78%,可以实时诊断植物叶片疾病。为了训练 DCDM 深度学习模型,我们使用了四万个图像,然后在一万个图像上进行了评估。使用 AWS DeepLens 测试一张图像进行疾病诊断和分类平均需要 0.349 秒,为消费者提供了不到一秒的疾病信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e058/7745985/c4b5c54f2d14/pone.0243243.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验