Suppr超能文献

RNA 介导的转录凝聚物反馈控制。

RNA-Mediated Feedback Control of Transcriptional Condensates.

机构信息

Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Cell. 2021 Jan 7;184(1):207-225.e24. doi: 10.1016/j.cell.2020.11.030. Epub 2020 Dec 16.

Abstract

Regulation of biological processes typically incorporates mechanisms that initiate and terminate the process and, where understood, these mechanisms often involve feedback control. Regulation of transcription is a fundamental cellular process where the mechanisms involved in initiation have been studied extensively, but those involved in arresting the process are poorly understood. Modeling of the potential roles of RNA in transcriptional control suggested a non-equilibrium feedback control mechanism where low levels of RNA promote condensates formed by electrostatic interactions whereas relatively high levels promote dissolution of these condensates. Evidence from in vitro and in vivo experiments support a model where RNAs produced during early steps in transcription initiation stimulate condensate formation, whereas the burst of RNAs produced during elongation stimulate condensate dissolution. We propose that transcriptional regulation incorporates a feedback mechanism whereby transcribed RNAs initially stimulate but then ultimately arrest the process.

摘要

生物过程的调节通常包含启动和终止该过程的机制,而在已被理解的机制中,这些机制通常涉及反馈控制。转录的调节是一个基本的细胞过程,其中涉及启动的机制已经被广泛研究,但涉及终止的机制则知之甚少。RNA 在转录控制中的潜在作用的建模表明,存在一种非平衡的反馈控制机制,其中低水平的 RNA 促进由静电相互作用形成的凝聚物,而相对高水平的 RNA 则促进这些凝聚物的溶解。来自体外和体内实验的证据支持这样一种模型,即在转录起始的早期步骤中产生的 RNA 刺激凝聚物的形成,而在延伸过程中产生的 RNA 的爆发则刺激凝聚物的溶解。我们提出,转录调节包含一种反馈机制,其中转录产生的 RNA 最初刺激但最终终止该过程。

相似文献

1
RNA-Mediated Feedback Control of Transcriptional Condensates.
Cell. 2021 Jan 7;184(1):207-225.e24. doi: 10.1016/j.cell.2020.11.030. Epub 2020 Dec 16.
2
Pol II phosphorylation regulates a switch between transcriptional and splicing condensates.
Nature. 2019 Aug;572(7770):543-548. doi: 10.1038/s41586-019-1464-0. Epub 2019 Aug 7.
3
RNA in formation and regulation of transcriptional condensates.
RNA. 2022 Jan;28(1):52-57. doi: 10.1261/rna.078997.121. Epub 2021 Nov 12.
5
Mediator and RNA polymerase II clusters associate in transcription-dependent condensates.
Science. 2018 Jul 27;361(6400):412-415. doi: 10.1126/science.aar4199. Epub 2018 Jun 21.
6
Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation.
Mol Cell. 2021 Aug 19;81(16):3368-3385.e9. doi: 10.1016/j.molcel.2021.07.024. Epub 2021 Aug 9.
7
Enhancer Features that Drive Formation of Transcriptional Condensates.
Mol Cell. 2019 Aug 8;75(3):549-561.e7. doi: 10.1016/j.molcel.2019.07.009.
8
Formation of nuclear condensates by the Mediator complex subunit Med15 in mammalian cells.
BMC Biol. 2021 Nov 17;19(1):245. doi: 10.1186/s12915-021-01178-y.
9
Hijacking of transcriptional condensates by endogenous retroviruses.
Nat Genet. 2022 Aug;54(8):1238-1247. doi: 10.1038/s41588-022-01132-w. Epub 2022 Jul 21.
10
Direct observation of a condensate effect on super-enhancer controlled gene bursting.
Cell. 2024 Jan 18;187(2):331-344.e17. doi: 10.1016/j.cell.2023.12.005. Epub 2024 Jan 8.

引用本文的文献

1
3
YAP charge patterning mediates signal integration through transcriptional co-condensates.
Nat Commun. 2025 Aug 12;16(1):7454. doi: 10.1038/s41467-025-62157-3.
4
Computer Simulations Show That Liquid-Liquid Phase Separation Enhances Self-Assembly.
ACS Nano. 2025 Aug 26;19(33):30275-30291. doi: 10.1021/acsnano.5c08120. Epub 2025 Aug 9.
5
Transcriptional regulation of SlFRIGIDA-like improve antioxidant system in tomato under cold.
BMC Plant Biol. 2025 Aug 6;25(1):1030. doi: 10.1186/s12870-025-06993-x.
6
Immiscible proteins compete for RNA binding to order condensate layers.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2504778122. doi: 10.1073/pnas.2504778122. Epub 2025 Aug 6.
7
Activation of Pvt1b isoform contributes to local Pvt1 abundance to repress Myc during stress.
PLoS Genet. 2025 Jul 31;21(7):e1011790. doi: 10.1371/journal.pgen.1011790. eCollection 2025 Jul.
9
Med14 phosphorylation shapes genomic response to GLP-1 Agonist.
bioRxiv. 2025 Jun 23:2025.06.17.660196. doi: 10.1101/2025.06.17.660196.
10
A conserved coupling of transcriptional ON and OFF periods underlies bursting dynamics.
Nat Struct Mol Biol. 2025 Jul 15. doi: 10.1038/s41594-025-01615-4.

本文引用的文献

1
Cellpose: a generalist algorithm for cellular segmentation.
Nat Methods. 2021 Jan;18(1):100-106. doi: 10.1038/s41592-020-01018-x. Epub 2020 Dec 14.
2
MeCP2 links heterochromatin condensates and neurodevelopmental disease.
Nature. 2020 Oct;586(7829):440-444. doi: 10.1038/s41586-020-2574-4. Epub 2020 Jul 22.
3
Biomolecular Condensates in the Nucleus.
Trends Biochem Sci. 2020 Nov;45(11):961-977. doi: 10.1016/j.tibs.2020.06.007. Epub 2020 Jul 17.
4
RNA contributions to the form and function of biomolecular condensates.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):183-195. doi: 10.1038/s41580-020-0264-6. Epub 2020 Jul 6.
5
Partitioning of cancer therapeutics in nuclear condensates.
Science. 2020 Jun 19;368(6497):1386-1392. doi: 10.1126/science.aaz4427.
6
Transcription in Living Cells: Molecular Mechanisms of Bursting.
Annu Rev Biochem. 2020 Jun 20;89:189-212. doi: 10.1146/annurev-biochem-011520-105250. Epub 2020 Mar 24.
7
The nf-core framework for community-curated bioinformatics pipelines.
Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x.
8
What Is a Transcriptional Burst?
Trends Genet. 2020 Apr;36(4):288-297. doi: 10.1016/j.tig.2020.01.003. Epub 2020 Feb 5.
9
Electrostatically Driven Complex Coacervation and Amyloid Aggregation of Tau Are Independent Processes with Overlapping Conditions.
ACS Chem Neurosci. 2020 Feb 19;11(4):615-627. doi: 10.1021/acschemneuro.9b00627. Epub 2020 Feb 4.
10
Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification.
Genetics. 2019 Dec;213(4):1093-1110. doi: 10.1534/genetics.119.302661.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验