Suppr超能文献

纳米图案表面上细菌相互作用与死亡的机制

Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces.

作者信息

Velic Amar, Hasan Jafar, Li Zhiyong, Yarlagadda Prasad K D V

机构信息

School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.

School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

Biophys J. 2021 Jan 19;120(2):217-231. doi: 10.1016/j.bpj.2020.12.003. Epub 2020 Dec 15.

Abstract

Nanopatterned surfaces are believed to kill bacteria through physical deformation, a mechanism that has immense potential against biochemical resistance. Because of its elusive nature, this mechanism is mostly understood through biophysical modeling. Problematically, accurate descriptions of the contact mechanics and various boundary conditions involved in the bacteria-nanopattern interaction remain to be seen. This may underpin conflicting predictions, found throughout the literature, regarding two important aspects of the mechanism-that is, its critical action site and relationship with geometry. Herein, a robust computational analysis of bacteria-nanopattern interaction is performed using a three-dimensional finite element modeling that incorporates relevant continuum mechanical properties, multilayered envelope structure, and adhesion interaction conditions. The model is applied to more accurately study the elusory mechanism and its enhancement via nanopattern geometry. Additionally, micrographs of bacteria adhered on a nanopatterned cicada wing are examined to further inform and verify the major modeling predictions. Together, the results indicate that nanopatterned surfaces do not kill bacteria predominantly by rupture in between protruding pillars as previously thought. Instead, nondevelopable deformation about pillar tips is more likely to create a critical site at the pillar apex, which delivers significant in-plane strains and may locally rupture and penetrate the cell. The computational analysis also demonstrates that envelope deformation is increased by adhesion to nanopatterns with smaller pillar radii and spacing. These results further progress understanding of the mechanism of nanopatterned surfaces and help guide their design for enhanced bactericidal efficiency.

摘要

纳米图案化表面被认为是通过物理变形来杀灭细菌的,这一机制在对抗生物化学抗性方面具有巨大潜力。由于其难以捉摸的性质,这种机制主要是通过生物物理建模来理解的。问题在于,对于细菌与纳米图案相互作用中涉及的接触力学和各种边界条件的准确描述仍有待观察。这可能是文献中关于该机制的两个重要方面——即其关键作用位点及其与几何形状的关系——存在相互矛盾预测的原因。在此,使用三维有限元建模对细菌与纳米图案的相互作用进行了稳健的计算分析,该建模纳入了相关的连续介质力学特性、多层包膜结构和粘附相互作用条件。该模型用于更准确地研究这种难以捉摸的机制及其通过纳米图案几何形状的增强作用。此外,还检查了附着在纳米图案化蝉翼上的细菌的显微照片,以进一步为主要建模预测提供信息并进行验证。综合来看,结果表明纳米图案化表面并非如先前认为的那样主要通过突出柱体之间的破裂来杀灭细菌。相反,柱体尖端的不可展变形更有可能在柱体顶端形成一个关键位点,该位点会产生显著的面内应变,并可能局部破裂并穿透细胞。计算分析还表明,通过与具有较小柱体半径和间距的纳米图案的粘附,包膜变形会增加。这些结果进一步推动了对纳米图案化表面机制的理解,并有助于指导其设计以提高杀菌效率。

相似文献

1
Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces.纳米图案表面上细菌相互作用与死亡的机制
Biophys J. 2021 Jan 19;120(2):217-231. doi: 10.1016/j.bpj.2020.12.003. Epub 2020 Dec 15.
4
Theoretical study on the bactericidal nature of nanopatterned surfaces.纳米图案化表面杀菌特性的理论研究
J Theor Biol. 2015 Nov 21;385:1-7. doi: 10.1016/j.jtbi.2015.08.011. Epub 2015 Sep 4.
6
Bactericidal mechanism of nanopatterned surfaces.纳米图案化表面的杀菌机制。
Phys Chem Chem Phys. 2016 Jan 14;18(2):1311-6. doi: 10.1039/c5cp05646b.

引用本文的文献

6
[Advances in nanostructured surfaces for enhanced mechano-bactericidal applications].用于增强机械杀菌应用的纳米结构表面研究进展
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Oct 25;41(5):1046-1052. doi: 10.7507/1001-5515.202407099.

本文引用的文献

2
The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces.纳米结构表面的多方面机械杀菌机制。
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12598-12605. doi: 10.1073/pnas.1916680117. Epub 2020 May 26.
5
Mechanical properties of lipid bilayers: a note on the Poisson ratio.脂质双层的力学性质:泊松比的一个注记。
Soft Matter. 2019 Nov 28;15(44):9085-9092. doi: 10.1039/c9sm01290g. Epub 2019 Oct 28.
6
Mechanics and Dynamics of Bacterial Cell Lysis.细菌细胞裂解的力学和动力学。
Biophys J. 2019 Jun 18;116(12):2378-2389. doi: 10.1016/j.bpj.2019.04.040. Epub 2019 May 17.
8
The role of adhesion in contact mechanics.粘连在接触力学中的作用。
J R Soc Interface. 2019 Feb 28;16(151):20180738. doi: 10.1098/rsif.2018.0738.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验