Suppr超能文献

FAN-C:一个功能丰富的框架,用于分析和可视化染色体构象捕获数据。

FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data.

机构信息

Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.

MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.

出版信息

Genome Biol. 2020 Dec 17;21(1):303. doi: 10.1186/s13059-020-02215-9.

Abstract

Chromosome conformation capture data, particularly from high-throughput approaches such as Hi-C, are typically very complex to analyse. Existing analysis tools are often single-purpose, or limited in compatibility to a small number of data formats, frequently making Hi-C analyses tedious and time-consuming. Here, we present FAN-C, an easy-to-use command-line tool and powerful Python API with a broad feature set covering matrix generation, analysis, and visualisation for C-like data ( https://github.com/vaquerizaslab/fanc ). Due to its compatibility with the most prevalent Hi-C storage formats, FAN-C can be used in combination with a large number of existing analysis tools, thus greatly simplifying Hi-C matrix analysis.

摘要

染色质构象捕获数据,特别是来自高通量方法(如 Hi-C)的数据,通常非常复杂,难以分析。现有的分析工具通常是单一用途的,或者与少数数据格式兼容,这使得 Hi-C 分析繁琐且耗时。在这里,我们展示了 FAN-C,这是一个易于使用的命令行工具和强大的 Python API,具有广泛的功能集,涵盖了 C 类数据的矩阵生成、分析和可视化(https://github.com/vaquerizaslab/fanc)。由于它与最流行的 Hi-C 存储格式兼容,FAN-C 可以与大量现有的分析工具结合使用,从而大大简化了 Hi-C 矩阵分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e7e/7745377/a2aa4ce63204/13059_2020_2215_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验