Bauer Yasmina, de Bernard Simon, Hickey Peter, Ballard Karri, Cruz Jeremy, Cornelisse Peter, Chadha-Boreham Harbajan, Distler Oliver, Rosenberg Daniel, Doelberg Martin, Roux Sebastien, Nayler Oliver, Lawrie Allan
Galapagos GmbH, Basel, Switzerland.
Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.
Eur Respir J. 2021 Jun 24;57(6). doi: 10.1183/13993003.02591-2020. Print 2021 Jun.
Pulmonary arterial hypertension (PAH) is a devastating complication of systemic sclerosis (SSc). Screening for PAH in SSc has increased detection, allowed early treatment for PAH and improved patient outcomes. Blood-based biomarkers that reliably identify SSc patients at risk of PAH, or with early disease, would significantly improve screening, potentially leading to improved survival, and provide novel mechanistic insights into early disease. The main objective of this study was to identify a proteomic biomarker signature that could discriminate SSc patients with and without PAH using a machine learning approach and to validate the findings in an external cohort.Serum samples from patients with SSc and PAH (n=77) and SSc without pulmonary hypertension (non-PH) (n=80) were randomly selected from the clinical DETECT study and underwent proteomic screening using the Myriad RBM Discovery platform consisting of 313 proteins. Samples from an independent validation SSc cohort (PAH n=22 and non-PH n=22) were obtained from the University of Sheffield (Sheffield, UK).Random forest analysis identified a novel panel of eight proteins, comprising collagen IV, endostatin, insulin-like growth factor binding protein (IGFBP)-2, IGFBP-7, matrix metallopeptidase-2, neuropilin-1, N-terminal pro-brain natriuretic peptide and RAGE (receptor for advanced glycation end products), that discriminated PAH from non-PH in SSc patients in the DETECT Discovery Cohort (average area under the receiver operating characteristic curve 0.741, 65.1% sensitivity/69.0% specificity), which was reproduced in the Sheffield Confirmatory Cohort (81.1% accuracy, 77.3% sensitivity/86.5% specificity).This novel eight-protein biomarker panel has the potential to improve early detection of PAH in SSc patients and may provide novel insights into the pathogenesis of PAH in the context of SSc.
肺动脉高压(PAH)是系统性硬化症(SSc)的一种严重并发症。对SSc患者进行PAH筛查增加了其检出率,使PAH得以早期治疗并改善了患者预后。可靠地识别有PAH风险或患有早期疾病的SSc患者的血液生物标志物,将显著改善筛查效果,可能提高生存率,并为早期疾病提供新的机制见解。本研究的主要目的是使用机器学习方法识别一种蛋白质组学生物标志物特征,以区分有和没有PAH的SSc患者,并在外部队列中验证研究结果。
从临床DETECT研究中随机选取了患有SSc和PAH的患者(n = 77)以及没有肺动脉高压(非PH)的SSc患者(n = 80)的血清样本,并使用由313种蛋白质组成的Myriad RBM发现平台进行蛋白质组学筛查。来自独立验证SSc队列(PAH患者n = 22,非PH患者n = 22)的样本取自英国谢菲尔德大学。
随机森林分析确定了一个由八种蛋白质组成的新组合,包括IV型胶原蛋白、内皮抑素、胰岛素样生长因子结合蛋白(IGFBP)-2、IGFBP-7、基质金属肽酶-2、神经纤毛蛋白-1、N端前脑钠肽和晚期糖基化终末产物受体(RAGE),该组合在DETECT发现队列中区分了SSc患者中的PAH和非PH(受试者工作特征曲线下平均面积为0.741,灵敏度65.1%/特异性69.0%),这一结果在谢菲尔德验证队列中得到了重现(准确率81.1%,灵敏度77.3%/特异性86.5%)。
这种新的八种蛋白质生物标志物组合有可能改善SSc患者中PAH的早期检测,并可能为SSc背景下PAH的发病机制提供新的见解。