Suppr超能文献

用于癌症检测与识别的微流控设备原型验证:基于细胞轨迹分析的循环肿瘤细胞分类,利用基于细胞的建模和机器学习

Validation of a Microfluidic Device Prototype for Cancer Detection and Identification: Circulating Tumor Cells Classification Based on Cell Trajectory Analysis Leveraging Cell-Based Modeling and Machine Learning.

作者信息

Rejuan Rifat, Aulisa Eugenio, Li Wei, Thompson Travis, Kumar Sanjoy, Canic Suncica, Wang Yifan

机构信息

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA.

Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA.

出版信息

bioRxiv. 2024 Aug 20:2024.08.19.608572. doi: 10.1101/2024.08.19.608572.

Abstract

Microfluidic devices (MDs) present a novel method for detecting (CTCs), enhancing the process through targeted techniques and visual inspection. However, current approaches often yield heterogeneous CTC populations, necessitating additional processing for comprehensive analysis and phenotype identification. These procedures are often expensive, time-consuming, and need to be performed by skilled technicians. In this study, we investigate the potential of a cost-effective and efficient hyperuniform micropost MD approach for CTC classification. Our approach combines mathematical modeling of fluid-structure interactions in a simulated microfluidic channel with machine learning techniques. Specifically, we developed a cell-based modeling framework to assess CTC dynamics in erythrocyte-laden plasma flow, generating a large dataset of CTC trajectories that account for two distinct CTC phenotypes. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) were then employed to analyze the dataset and classify these phenotypes. The results demonstrate the potential effectiveness of the hyperuniform micropost MD design and analysis approach in distinguishing between different CTC phenotypes based on cell trajectory, offering a promising avenue for early cancer detection.

摘要

微流控设备(MDs)提出了一种检测循环肿瘤细胞(CTCs)的新方法,通过靶向技术和视觉检测来改进这一过程。然而,目前的方法往往会产生异质性的CTCs群体,需要额外的处理来进行全面分析和表型鉴定。这些程序通常成本高昂、耗时,并且需要由熟练的技术人员来执行。在本研究中,我们研究了一种经济高效的超均匀微柱MD方法用于CTCs分类的潜力。我们的方法将模拟微流控通道中流固相互作用的数学建模与机器学习技术相结合。具体而言,我们开发了一个基于细胞的建模框架,以评估富含红细胞的血浆流中CTCs的动态,生成一个包含两种不同CTCs表型的CTCs轨迹的大型数据集。然后使用卷积神经网络(CNN)和循环神经网络(RNN)来分析该数据集并对这些表型进行分类。结果证明了超均匀微柱MD设计和分析方法在基于细胞轨迹区分不同CTCs表型方面的潜在有效性,为早期癌症检测提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f9e/11370430/2f5e534c8167/nihpp-2024.08.19.608572v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验