CIC biomaGUNE Center for Cooperative Research in Biomaterials, BRTA Basque Research and Technology Alliance, Donostia, Donostia, Gipuzkoa, Spain.
CIBER de enfermedades respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
Sci Rep. 2020 Dec 18;10(1):22317. doi: 10.1038/s41598-020-78999-4.
Despite efforts to improve tuberculosis (TB) detection, limitations in access, quality and timeliness of diagnostic services in low- and middle-income countries are challenging for current TB diagnostics. This study aimed to identify and characterise a metabolic profile of TB in urine by high-field nuclear magnetic resonance (NMR) spectrometry and assess whether the TB metabolic profile is also detected by a low-field benchtop NMR spectrometer. We included 189 patients with tuberculosis, 42 patients with pneumococcal pneumonia, 61 individuals infected with latent tuberculosis and 40 uninfected individuals. We acquired the urine spectra from high and low-field NMR. We characterised a TB metabolic fingerprint from the Principal Component Analysis. We developed a classification model from the Partial Least Squares-Discriminant Analysis and evaluated its performance. We identified a metabolic fingerprint of 31 chemical shift regions assigned to eight metabolites (aminoadipic acid, citrate, creatine, creatinine, glucose, mannitol, phenylalanine, and hippurate). The model developed using low-field NMR urine spectra correctly classified 87.32%, 85.21% and 100% of the TB patients compared to pneumococcal pneumonia patients, LTBI and uninfected individuals, respectively. The model validation correctly classified 84.10% of the TB patients. We have identified and characterised a metabolic profile of TB in urine from a high-field NMR spectrometer and have also detected it using a low-field benchtop NMR spectrometer. The models developed from the metabolic profile of TB identified by both NMR technologies were able to discriminate TB patients from the rest of the study groups and the results were not influenced by anti-TB treatment or TB location. This provides a new approach in the search for possible biomarkers for the diagnosis of TB.
尽管为提高结核病(TB)检出率付出了努力,但在中低收入国家,诊断服务的可及性、质量和及时性仍然存在局限,这对当前的 TB 诊断构成了挑战。本研究旨在通过高场核磁共振(NMR)光谱技术确定和描述尿液中 TB 的代谢特征,并评估 TB 代谢特征是否也可通过低场台式 NMR 光谱仪检测到。我们纳入了 189 例结核病患者、42 例肺炎链球菌性肺炎患者、61 例潜伏性结核感染患者和 40 例未感染者。我们分别从高场和低场 NMR 获得尿液光谱。我们从主成分分析中对 TB 代谢指纹图谱进行了特征描述。我们基于偏最小二乘判别分析建立了分类模型,并评估了其性能。我们鉴定出 31 个化学位移区域的代谢指纹图谱,分配给 8 种代谢物(氨基己二酸、柠檬酸盐、肌酸、肌酐、葡萄糖、甘露醇、苯丙氨酸和马尿酸)。使用低场 NMR 尿液光谱建立的模型正确分类了 87.32%、85.21%和 100%的 TB 患者,与肺炎链球菌性肺炎患者、LTBI 和未感染者相比。模型验证正确分类了 84.10%的 TB 患者。我们已从高场 NMR 光谱仪中鉴定和描述了尿液中 TB 的代谢特征,并且还使用低场台式 NMR 光谱仪检测到了它。从两种 NMR 技术鉴定的 TB 代谢特征中建立的模型能够将 TB 患者与研究组的其余部分区分开来,并且结果不受抗 TB 治疗或 TB 位置的影响。这为寻找可能的 TB 诊断生物标志物提供了一种新方法。