Edreira Juan I Rattalino, Cassman Kenneth G, Hochman Zvi, van Ittersum Martin K, van Bussel Lenny, Claessens Lieven, Grassini Patricio
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, United States of America.
CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
Environ Res Lett. 2018;13(5):054027. doi: 10.1088/1748-9326/aac092. Epub 2018 May 14.
Ensuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland. Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate 'technology extrapolation domains' based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production. The proposed framework adequately represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn Belt. It also facilitates evaluation of cropping system performance across continents, which can improve efficiency of agricultural research that seeks to intensify production on existing farmland. Populating this biophysical spatial framework with appropriate socio-economic attributes provides the potential to amplify the return on investments in agricultural research and development by improving the effectiveness of research prioritization and impact assessment.
要在保护环境质量和保护自然资源的系统中确保充足的食物供应,就需要在现有农田上建立高产且资源高效的种植系统。如果没有一个强大的空间框架来促进对现有和新兴技术的快速评估与推广,应对这一挑战将十分困难。在此,我们开发了一个全球空间框架,基于控制雨养作物生产中作物产量和产量稳定性的关键气候和土壤因素来划定“技术外推域”。当在数据丰富的美国玉米带进行评估时,所提出的框架充分体现了作物产量和稳定性的空间格局。它还便于对各大洲的种植系统性能进行评估,这有助于提高旨在提高现有农田产量的农业研究效率。用适当的社会经济属性填充这个生物物理空间框架,有可能通过提高研究优先级确定和影响评估的有效性,来扩大农业研发投资的回报。