Suppr超能文献

作物对厄尔尼诺-南方涛动相关天气变化的响应,以帮助农民管理他们的作物。

Crop response to El Niño-Southern Oscillation related weather variation to help farmers manage their crops.

机构信息

Data Analysis Consultant, 9 Kia Ora Parade, Ferntree Gully, VIC, 3156, Australia.

Emeritus, Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.

出版信息

Sci Rep. 2021 Apr 15;11(1):8292. doi: 10.1038/s41598-021-87520-4.

Abstract

Although weather is a major driver of crop yield, many farmers don't know in advance how the weather will vary nor how their crops will respond. We hypothesized that where El Niño-Southern Oscillation (ENSO) drives weather patterns, and data on crop response to distinct management practices exists, it should be possible to map ENSO Oceanic Index (ENSO OI) patterns to crop management responses without precise weather data. Time series data on cacao farm yields in Sulawesi, Indonesia, with and without fertilizer, were used to provide proof-of-concept. A machine learning approach associated 75% of cacao yield variation with the ENSO patterns up to 8 and 24 months before harvest and predicted when fertilizer applications would be worthwhile. Thus, it's possible to relate average cacao crop performance and management response directly to ENSO patterns without weather data provided: (1) site specific data exist on crop performance over time with distinct management practices; and (2) the weather patterns are driven by ENSO OI. We believe that the principles established here can readily be applied to other crops, particularly when there's little data available on crop responses to management and weather. However, specific models will be required for each crop and every recommendation domain.

摘要

尽管天气是影响作物产量的主要因素,但许多农民事先并不了解天气将如何变化,也不知道他们的作物将如何应对。我们假设,在厄尔尼诺-南方涛动(ENSO)驱动天气模式的地方,如果存在关于作物对不同管理实践的反应的数据,那么在没有精确天气数据的情况下,将 ENSO 海洋指数(ENSO OI)模式映射到作物管理反应应该是可能的。印度尼西亚苏拉威西岛有和没有施肥的可可农场产量的时间序列数据被用来提供概念验证。一种机器学习方法将 75%的可可产量变化与收获前 8 个月和 24 个月的 ENSO 模式相关联,并预测何时施肥是值得的。因此,在没有天气数据的情况下,可可作物的平均表现和管理反应可以直接与 ENSO 模式相关联:(1)随着时间的推移,特定地点存在关于作物表现和不同管理实践的数据;(2)天气模式是由 ENSO OI 驱动的。我们相信,这里确立的原则可以很容易地应用于其他作物,特别是在对作物对管理和天气的反应的数据很少的情况下。然而,每个作物和每个推荐领域都需要特定的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d75f/8050235/e06926a19c92/41598_2021_87520_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验