Suppr超能文献

通过深度学习探索年龄相关性黄斑变性中延迟的视杆介导暗适应的结构基础

Exploring a Structural Basis for Delayed Rod-Mediated Dark Adaptation in Age-Related Macular Degeneration Via Deep Learning.

作者信息

Lee Aaron Y, Lee Cecilia S, Blazes Marian S, Owen Julia P, Bagdasarova Yelena, Wu Yue, Spaide Theodore, Yanagihara Ryan T, Kihara Yuka, Clark Mark E, Kwon MiYoung, Owsley Cynthia, Curcio Christine A

机构信息

Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA.

Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Transl Vis Sci Technol. 2020 Dec 15;9(2):62. doi: 10.1167/tvst.9.2.62. eCollection 2020 Dec.

Abstract

PURPOSE

Delayed rod-mediated dark adaptation (RMDA) is a functional biomarker for incipient age-related macular degeneration (AMD). We used anatomically restricted spectral domain optical coherence tomography (SD-OCT) imaging data to localize de novo imaging features associated with and to test hypotheses about delayed RMDA.

METHODS

Rod intercept time (RIT) was measured in participants with and without AMD at 5 degrees from the fovea, and macular SD-OCT images were obtained. A deep learning model was trained with anatomically restricted information using a single representative B-scan through the fovea of each eye. Mean-occlusion masking was utilized to isolate the relevant imaging features.

RESULTS

The model identified hyporeflective outer retinal bands on macular SD-OCT associated with delayed RMDA. The validation mean standard error (MSE) registered to the foveal B-scan localized the lowest error to 0.5 mm temporal to the fovea center, within an overall low-error region across the rod-free zone and adjoining parafovea. Mean absolute error (MAE) on the test set was 4.71 minutes (8.8% of the dynamic range).

CONCLUSIONS

We report a novel framework for imaging biomarker discovery using deep learning and demonstrate its ability to identify and localize a previously undescribed biomarker in retinal imaging. The hyporeflective outer retinal bands in central macula on SD-OCT demonstrate a structural basis for dysfunctional rod vision that correlates to published histopathologic findings.

TRANSLATIONAL RELEVANCE

This agnostic approach to anatomic biomarker discovery strengthens the rationale for RMDA as an outcome measure in early AMD clinical trials, and also expands the utility of deep learning beyond automated diagnosis to fundamental discovery.

摘要

目的

延迟的视杆细胞介导的暗适应(RMDA)是早期年龄相关性黄斑变性(AMD)的一种功能性生物标志物。我们使用解剖学上受限的光谱域光学相干断层扫描(SD-OCT)成像数据来定位与延迟RMDA相关的新生成像特征,并检验关于延迟RMDA的假设。

方法

在距黄斑中心凹5度处测量有和没有AMD的参与者的视杆细胞截获时间(RIT),并获取黄斑SD-OCT图像。使用通过每只眼睛黄斑中心凹的单个代表性B扫描,利用解剖学上受限的信息训练深度学习模型。采用平均遮挡掩蔽来分离相关的成像特征。

结果

该模型在黄斑SD-OCT上识别出与延迟RMDA相关的低反射性视网膜外层带。对黄斑中心凹B扫描记录的验证平均标准误差(MSE)将最低误差定位在黄斑中心凹中心颞侧0.5毫米处,位于整个无视杆细胞区和邻近视网膜旁中心凹的低误差区域内。测试集上的平均绝对误差(MAE)为4.71分钟(动态范围的8.8%)。

结论

我们报告了一种使用深度学习发现成像生物标志物的新框架,并证明了其识别和定位视网膜成像中先前未描述的生物标志物的能力。SD-OCT上黄斑中心区的低反射性视网膜外层带显示了与已发表的组织病理学发现相关的视杆细胞视觉功能障碍的结构基础。

转化相关性

这种用于解剖学生物标志物发现的不可知方法加强了将RMDA作为早期AMD临床试验结果指标的理论基础,并且还将深度学习的应用从自动诊断扩展到基础发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c2/7745629/c72c77e243ed/tvst-9-2-62-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验