Suppr超能文献

根据免疫细胞特征对脓毒症患者进行分类:两项队列研究的生物信息学分析

Classification of Patients With Sepsis According to Immune Cell Characteristics: A Bioinformatic Analysis of Two Cohort Studies.

作者信息

Zhang Shi, Wu Zongsheng, Chang Wei, Liu Feng, Xie Jianfeng, Yang Yi, Qiu Haibo

机构信息

Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.

出版信息

Front Med (Lausanne). 2020 Dec 3;7:598652. doi: 10.3389/fmed.2020.598652. eCollection 2020.

Abstract

Sepsis is well-known to alter innate and adaptive immune responses for sustained periods after initiation by an invading pathogen. Identification of immune cell characteristics may shed light on the immune signature of patients with sepsis and further indicate the appropriate immune-modulatory therapy for distinct populations. Therefore, we aimed to establish an immune model to classify sepsis into different immune endotypes via transcriptomics data analysis of previously published cohort studies. Datasets from two observational cohort studies that included 585 consecutive sepsis patients admitted to two intensive care units were downloaded as a training cohort and an external validation cohort. We analyzed genome-wide gene expression profiles in blood from these patients by using machine learning and bioinformatics. The training cohort and the validation cohort had 479 and 106 patients, respectively. Principal component analysis indicated that two immune subphenotypes associated with sepsis, designated the immunoparalysis endotype, and immunocompetent endotype, could be distinguished clearly. In the training cohort, a higher cumulative 28-day mortality was found in patients classified as having the immunoparalysis endotype, and the hazard ratio was 2.32 (95% CI: 1.53-3.46 vs. the immunocompetent endotype). External validation further demonstrated that the present model could categorize sepsis into the immunoparalysis and immunocompetent type precisely and efficiently. The percentages of 4 types of immune cells (M0 macrophages, M2 macrophages, naïve B cells, and naïve CD4 T cells) were significantly associated with 28-day cumulative mortality ( < 0.05). The present study developed a comprehensive tool to identify the immunoparalysis endotype and immunocompetent status in hospitalized patients with sepsis and provides novel clues for further targeting of therapeutic approaches.

摘要

众所周知,脓毒症会在入侵病原体引发疾病后的持续一段时间内改变先天性和适应性免疫反应。识别免疫细胞特征可能有助于揭示脓毒症患者的免疫特征,并进一步为不同人群指明合适的免疫调节疗法。因此,我们旨在通过对先前发表的队列研究进行转录组学数据分析,建立一个免疫模型,将脓毒症分为不同的免疫亚型。从两项观察性队列研究中下载了数据集,这些研究包括入住两个重症监护病房的585例连续脓毒症患者,作为训练队列和外部验证队列。我们使用机器学习和生物信息学分析了这些患者血液中的全基因组基因表达谱。训练队列和验证队列分别有479例和106例患者。主成分分析表明,可以清楚地区分与脓毒症相关的两种免疫亚表型,即免疫麻痹亚型和免疫健全亚型。在训练队列中,被分类为具有免疫麻痹亚型的患者28天累积死亡率更高,风险比为2.32(95%CI:1.53-3.46,与免疫健全亚型相比)。外部验证进一步表明,本模型可以准确、高效地将脓毒症分为免疫麻痹型和免疫健全型。4种免疫细胞(M0巨噬细胞、M2巨噬细胞、幼稚B细胞和幼稚CD4 T细胞)的百分比与28天累积死亡率显著相关(<0.05)。本研究开发了一种综合工具,用于识别住院脓毒症患者的免疫麻痹亚型和免疫健全状态,并为进一步靶向治疗方法提供了新线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a09e/7744969/b1c95d1deeeb/fmed-07-598652-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验