Suppr超能文献

在探索解开生物学谜团的过程中,相关原子力显微镜和超分辨率显微镜是如何发展的?

How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology?

作者信息

Miranda Adelaide, Gómez-Varela Ana I, Stylianou Andreas, Hirvonen Liisa M, Sánchez Humberto, De Beule Pieter A A

机构信息

International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.

Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus and School of Sciences, European University Cyprus, Nicosia, Cyprus.

出版信息

Nanoscale. 2021 Feb 4;13(4):2082-2099. doi: 10.1039/d0nr07203f.

Abstract

With the invention of the Atomic Force Microscope (AFM) in 1986 and the subsequent developments in liquid imaging and cellular imaging it became possible to study the topography of cellular specimens under nearly physiological conditions with nanometric resolution. The application of AFM to biological research was further expanded with the technological advances in imaging modes where topographical data can be combined with nanomechanical measurements, offering the possibility to retrieve the biophysical properties of tissues, cells, fibrous components and biomolecules. Meanwhile, the quest for breaking the Abbe diffraction limit restricting microscopic resolution led to the development of super-resolution fluorescence microscopy techniques that brought the resolution of the light microscope comparable to the resolution obtained by AFM. The instrumental combination of AFM and optical microscopy techniques has evolved over the last decades from integration of AFM with bright-field and phase-contrast imaging techniques at first to correlative AFM and wide-field fluorescence systems and then further to the combination of AFM and fluorescence based super-resolution microscopy modalities. Motivated by the many developments made over the last decade, we provide here a review on AFM combined with super-resolution fluorescence microscopy techniques and how they can be applied for expanding our understanding of biological processes.

摘要

随着1986年原子力显微镜(AFM)的发明以及随后在液体成像和细胞成像方面的发展,在接近生理条件下以纳米分辨率研究细胞标本的形貌成为可能。随着成像模式的技术进步,AFM在生物研究中的应用得到了进一步扩展,在这种模式下,形貌数据可以与纳米力学测量相结合,从而有可能获取组织、细胞、纤维成分和生物分子的生物物理特性。与此同时,突破限制显微镜分辨率的阿贝衍射极限的探索促使了超分辨率荧光显微镜技术的发展,使光学显微镜的分辨率达到了与AFM相当的水平。在过去几十年中,AFM与光学显微镜技术的仪器组合不断发展,从最初将AFM与明场和相差成像技术相结合,到相关的AFM和宽场荧光系统,再到进一步将AFM与基于荧光的超分辨率显微镜模式相结合。受过去十年众多发展成果的推动,我们在此对AFM与超分辨率荧光显微镜技术的结合以及它们如何应用于扩展我们对生物过程的理解进行综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验