Suppr超能文献

原子力显微镜在结构生物学中的应用的最新进展。

Recent advances in the application of atomic force microscopy to structural biology.

机构信息

Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.

Leibniz Institute for Food Systems Biology at the Technical University Munich, 85354 Freising, Germany.

出版信息

J Struct Biol. 2023 Jun;215(2):107963. doi: 10.1016/j.jsb.2023.107963. Epub 2023 Apr 10.

Abstract

The application of atomic force microscopy (AFM) for functional imaging and manipulating biomolecules at all levels of organization has enabled great progress in the structural biology field over the last decades, contributing to the discovery of novel structural entities of biological significance across many disciplines ranging from biochemistry, biomedicine and biophysics to molecular and cell biology, up to food systems and beyond. AFM has the capability to generate high-resolution topographic images spanning from the submolecular to the (sub)cellular range and can probe biochemical and biophysical sample properties in close to native conditions with excellent temporal resolution. Instrumental developments in the past decade enable dynamical structural and conformational studies of single biomolecules and new techniques for structural and chemical modification of the AFM probe have converted the cantilever into a versatile tool to study different biological phenomena, such as the mechanical stability of biomolecular complexes or the force induced dynamic changes of mechanically stressed proteins at the nanoscopic level. To improve the functionality of AFM and approach dynamic processes of complex biological systems ex vivo, AFM is combined with complementary microscopy, nanoscopy and spectroscopy tools. These multimethodological approaches provide unprecedented possibilities of probing physical, chemical and biological properties of complex cellular systems with high spatio-temporal resolution, leading to novel applications that correlate structural results with functional biochemical, biophysical, immunological, or genetic data of the system under study.

摘要

原子力显微镜(AFM)在各个组织水平上对生物分子的功能成像和操纵的应用,使得结构生物学领域在过去几十年中取得了巨大进展,有助于发现从生物化学、生物医学和生物物理学到分子和细胞生物学,直至食品系统等多个领域具有生物学意义的新型结构实体。AFM 具有生成从亚分子到(亚)细胞范围的高分辨率形貌图像的能力,并可以在接近自然条件下以优异的时间分辨率探测生物化学和生物物理样品的特性。过去十年中的仪器发展使人们能够对单个生物分子进行动态结构和构象研究,并且用于 AFM 探针结构和化学修饰的新技术将悬臂转化为一种多功能工具,用于研究不同的生物学现象,例如生物分子复合物的机械稳定性或在纳米尺度上机械应激蛋白的力诱导动态变化。为了提高 AFM 的功能并研究复杂生物系统的动态过程,AFM 与互补的显微镜、纳米技术和光谱技术相结合。这些多方法学方法提供了前所未有的可能性,可以以高时空分辨率探测复杂细胞系统的物理、化学和生物学特性,从而导致将结构结果与所研究系统的功能生化、生物物理、免疫学或遗传数据相关联的新应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验