Suppr超能文献

一项使用参考试样对单细胞 RNA 测序技术进行基准测试的多中心研究。

A multicenter study benchmarking single-cell RNA sequencing technologies using reference samples.

机构信息

Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA.

CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

出版信息

Nat Biotechnol. 2021 Sep;39(9):1103-1114. doi: 10.1038/s41587-020-00748-9. Epub 2020 Dec 21.

Abstract

Comparing diverse single-cell RNA sequencing (scRNA-seq) datasets generated by different technologies and in different laboratories remains a major challenge. Here we address the need for guidance in choosing algorithms leading to accurate biological interpretations of varied data types acquired with different platforms. Using two well-characterized cellular reference samples (breast cancer cells and B cells), captured either separately or in mixtures, we compared different scRNA-seq platforms and several preprocessing, normalization and batch-effect correction methods at multiple centers. Although preprocessing and normalization contributed to variability in gene detection and cell classification, batch-effect correction was by far the most important factor in correctly classifying the cells. Moreover, scRNA-seq dataset characteristics (for example, sample and cellular heterogeneity and platform used) were critical in determining the optimal bioinformatic method. However, reproducibility across centers and platforms was high when appropriate bioinformatic methods were applied. Our findings offer practical guidance for optimizing platform and software selection when designing an scRNA-seq study.

摘要

比较不同技术和不同实验室生成的多样化单细胞 RNA 测序(scRNA-seq)数据集仍然是一个主要挑战。在这里,我们需要指导如何选择算法,以实现对不同平台获得的不同数据类型的准确生物学解释。我们使用两个经过良好表征的细胞参考样本(乳腺癌细胞和 B 细胞),分别或混合捕获,在多个中心比较了不同的 scRNA-seq 平台和几种预处理、归一化和批次效应校正方法。尽管预处理和归一化导致基因检测和细胞分类的变异性,但批次效应校正显然是正确分类细胞的最重要因素。此外,scRNA-seq 数据集的特征(例如,样本和细胞异质性以及使用的平台)对于确定最佳生物信息学方法至关重要。然而,当应用适当的生物信息学方法时,跨中心和平台的重现性很高。我们的研究结果为设计 scRNA-seq 研究时优化平台和软件选择提供了实用指导。

相似文献

引用本文的文献

6
Reference Materials for Improving Reliability of Multiomics Profiling.提高多组学分析可靠性的参考材料。
Phenomics. 2024 Mar 6;4(5):487-521. doi: 10.1007/s43657-023-00153-7. eCollection 2024 Oct.
10
Single-cell omics: experimental workflow, data analyses and applications.单细胞组学:实验工作流程、数据分析及应用
Sci China Life Sci. 2025 Jan;68(1):5-102. doi: 10.1007/s11427-023-2561-0. Epub 2024 Jul 23.

本文引用的文献

7
BBKNN: fast batch alignment of single cell transcriptomes.BBKNN:快速批量比对单细胞转录组。
Bioinformatics. 2020 Feb 1;36(3):964-965. doi: 10.1093/bioinformatics/btz625.
8
Comprehensive Integration of Single-Cell Data.单细胞数据的综合整合。
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验