Suppr超能文献

新型冠状病毒肺炎(COVID-19)传播轨迹的分析与预测:一种机器学习方法。

Analysis and prediction of COVID-19 trajectory: A machine learning approach.

作者信息

Majhi Ritanjali, Thangeda Rahul, Sugasi Renu Prasad, Kumar Niraj

机构信息

School of Management National Institute of Technology Karnataka Surathkal Mangalore Karnataka.

National Institute of Technology Warangal India.

出版信息

J Public Aff. 2021 Nov;21(4):e2537. doi: 10.1002/pa.2537. Epub 2020 Nov 18.

Abstract

The outbreak of Coronavirus 2019 (COVID-19) has impacted everyday lives globally. The number of positive cases is growing and India is now one of the most affected countries. This paper builds predictive models that can predict the number of positive cases with higher accuracy. Regression-based, Decision tree-based, and Random forest-based models have been built on the data from China and are validated on India's sample. The model is found to be effective and will be able to predict the positive number of cases in the future with minimal error. The developed machine learning model can work in real-time and can effectively predict the number of positive cases. Key measures and suggestions have been put forward considering the effect of lockdown.

摘要

2019年冠状病毒病(COVID-19)疫情已对全球日常生活产生影响。阳性病例数量不断增加,印度现已成为受影响最严重的国家之一。本文构建了能够更准确预测阳性病例数量的预测模型。基于回归、决策树和随机森林的模型已根据中国的数据构建,并在印度的样本上进行了验证。该模型被发现是有效的,并且能够在未来以最小的误差预测阳性病例数量。所开发的机器学习模型可以实时运行,并能有效预测阳性病例数量。考虑到封锁的影响,还提出了关键措施和建议。

相似文献

2
Outbreak Trends of Coronavirus Disease-2019 in India: A Prediction.印度 2019 年冠状病毒病疫情趋势预测。
Disaster Med Public Health Prep. 2020 Oct;14(5):e33-e38. doi: 10.1017/dmp.2020.115. Epub 2020 Apr 22.

引用本文的文献

6
Deep learning for Covid-19 forecasting: State-of-the-art review.用于新冠疫情预测的深度学习:最新综述
Neurocomputing (Amst). 2022 Oct 28;511:142-154. doi: 10.1016/j.neucom.2022.09.005. Epub 2022 Sep 8.
9
Deep Spatiotemporal Model for COVID-19 Forecasting.深度时空模型用于 COVID-19 预测。
Sensors (Basel). 2022 May 5;22(9):3519. doi: 10.3390/s22093519.

本文引用的文献

2
3
Forecasting the novel coronavirus COVID-19.预测新型冠状病毒(COVID-19)。
PLoS One. 2020 Mar 31;15(3):e0231236. doi: 10.1371/journal.pone.0231236. eCollection 2020.
4
Data-based analysis, modelling and forecasting of the COVID-19 outbreak.基于数据的 COVID-19 疫情分析、建模和预测。
PLoS One. 2020 Mar 31;15(3):e0230405. doi: 10.1371/journal.pone.0230405. eCollection 2020.
5
Transmission potential and severity of COVID-19 in South Korea.韩国 COVID-19 的传播潜力和严重程度。
Int J Infect Dis. 2020 Apr;93:339-344. doi: 10.1016/j.ijid.2020.03.031. Epub 2020 Mar 18.
7
COVID-19 and Italy: what next?COVID-19 和意大利:下一步如何?
Lancet. 2020 Apr 11;395(10231):1225-1228. doi: 10.1016/S0140-6736(20)30627-9. Epub 2020 Mar 13.
9
Real-time epidemic forecasting for pandemic influenza.大流行性流感的实时疫情预测
Epidemiol Infect. 2007 Apr;135(3):372-85. doi: 10.1017/S0950268806007084. Epub 2006 Aug 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验