Suppr超能文献

体内神经胶质细胞向神经元的转分化促进中枢神经系统神经细胞的替代和功能恢复。

In vivo glial trans-differentiation for neuronal replacement and functional recovery in central nervous system.

机构信息

Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

FEBS J. 2021 Aug;288(16):4773-4785. doi: 10.1111/febs.15681. Epub 2021 Jan 9.

Abstract

The adult mammalian central nervous system (CNS) is deficient in intrinsic machineries to replace neurons lost in injuries or progressive degeneration. Various types of these neurons constitute neural circuitries wired to support vital sensory, motor, and cognitive functions. Based on the pioneer studies in cell lineage conversion, one promising strategy is to convert in vivo glial cells into neural progenitors or directly into neurons that can be eventually rewired for functional recovery. We first briefly summarize the well-studied regeneration-capable CNS in the zebrafish, focusing on their postinjury spontaneous reprogramming of the retinal Müller glia (MG). We then compare the signaling transductions, and transcriptional and epigenetic regulations in the zebrafish MGs with their mammalian counterparts, which perpetuate certain barriers against proliferation and neurogenesis and thus fail in MG-to-progenitor conversion. Next, we discuss emerging evidence from mouse studies, in which the in vivo glia-to-neuron conversion could be achieved with sequential or one-step genetic manipulations, such as the conversions from retinal MGs to interneurons, photoreceptors, or retinal ganglion cells (RGCs), as well as the conversions from midbrain astrocytes to dopaminergic or GABAergic neurons. Some of these in vivo studies showed considerable coverage of subtypes in the newly induced neurons and partial reestablishment in neural circuits and functions. Importantly, we would like to point out some crucial technical concerns that need to be addressed to convincingly show successful glia-to-neuron conversion. Finally, we present challenges and future directions in the field for better neural function recovery.

摘要

成年哺乳动物中枢神经系统 (CNS) 缺乏内在机制来替代损伤或进行性退化中丢失的神经元。这些神经元的各种类型构成了支持重要感觉、运动和认知功能的神经回路。基于细胞谱系转换的开创性研究,一种有前途的策略是将体内神经胶质细胞转化为神经祖细胞或直接转化为神经元,最终可以重新布线以实现功能恢复。我们首先简要总结了在斑马鱼中研究得很好的具有再生能力的 CNS,重点介绍了它们在视网膜 Müller 胶质细胞 (MG) 损伤后的自发重编程。然后,我们将斑马鱼 MG 中的信号转导以及转录和表观遗传调控与它们的哺乳动物对应物进行了比较,后者维持了某些增殖和神经发生的障碍,因此无法进行 MG 向祖细胞的转化。接下来,我们讨论了来自小鼠研究的新出现的证据,其中通过连续或一步遗传操作可以实现体内神经胶质向神经元的转化,例如从视网膜 MG 向中间神经元、光感受器或视网膜神经节细胞 (RGC) 的转化,以及从中脑星形胶质细胞向多巴胺能或 GABA 能神经元的转化。这些体内研究中的一些显示了新诱导神经元中相当多的亚型覆盖,并在神经回路和功能中部分重建。重要的是,我们想指出一些需要解决的关键技术问题,以令人信服地证明成功的神经胶质向神经元的转化。最后,我们提出了该领域在更好地恢复神经功能方面的挑战和未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验