Suppr超能文献

通过层次社区检测和基于网络的图形工具对生物分子网络进行多分辨率可视化和分析。

Multi-resolution visualization and analysis of biomolecular networks through hierarchical community detection and web-based graphical tools.

机构信息

AnacletoLab, Department of Computer Science, University of Milan, Milan, Italy.

Neuroradiology Unit, IRCCS San Raffaele Hospital, Milan, Italy.

出版信息

PLoS One. 2020 Dec 22;15(12):e0244241. doi: 10.1371/journal.pone.0244241. eCollection 2020.

Abstract

The visual exploration and analysis of biomolecular networks is of paramount importance for identifying hidden and complex interaction patterns among proteins. Although many tools have been proposed for this task, they are mainly focused on the query and visualization of a single protein with its neighborhood. The global exploration of the entire network and the interpretation of its underlying structure still remains difficult, mainly due to the excessively large size of the biomolecular networks. In this paper we propose a novel multi-resolution representation and exploration approach that exploits hierarchical community detection algorithms for the identification of communities occurring in biomolecular networks. The proposed graphical rendering combines two types of nodes (protein and communities) and three types of edges (protein-protein, community-community, protein-community), and displays communities at different resolutions, allowing the user to interactively zoom in and out from different levels of the hierarchy. Links among communities are shown in terms of relationships and functional correlations among the biomolecules they contain. This form of navigation can be also combined by the user with a vertex centric visualization for identifying the communities holding a target biomolecule. Since communities gather limited-size groups of correlated proteins, the visualization and exploration of complex and large networks becomes feasible on off-the-shelf computer machines. The proposed graphical exploration strategies have been implemented and integrated in UNIPred-Web, a web application that we recently introduced for combining the UNIPred algorithm, able to address both integration and protein function prediction in an imbalance-aware fashion, with an easy to use vertex-centric exploration of the integrated network. The tool has been deeply amended from different standpoints, including the prediction core algorithm. Several tests on networks of different size and connectivity have been conducted to show off the vast potential of our methodology; moreover, enrichment analyses have been performed to assess the biological meaningfulness of detected communities. Finally, a CoV-human network has been embedded in the system, and a corresponding case study presented, including the visualization and the prediction of human host proteins that potentially interact with SARS-CoV2 proteins.

摘要

生物分子网络的可视化探索和分析对于识别蛋白质之间隐藏的复杂相互作用模式至关重要。尽管已经提出了许多用于此任务的工具,但它们主要集中在查询和可视化单个蛋白质及其邻域。对整个网络的全局探索和对其底层结构的解释仍然很困难,主要是由于生物分子网络的规模过大。在本文中,我们提出了一种新的多分辨率表示和探索方法,该方法利用层次社区检测算法来识别生物分子网络中出现的社区。所提出的图形表示结合了两种类型的节点(蛋白质和社区)和三种类型的边(蛋白质-蛋白质、社区-社区、蛋白质-社区),并以不同的分辨率显示社区,使用户能够从层次结构的不同级别进行交互缩放。社区之间的链接以它们包含的生物分子之间的关系和功能相关性来表示。这种导航形式可以与用户结合使用,以基于目标生物分子识别包含该生物分子的社区。由于社区聚集了有限大小的相关蛋白质组,因此可以在现成的计算机上可视化和探索复杂和大型网络。所提出的图形探索策略已经在 UNIPred-Web 中实现并集成,这是我们最近引入的一个网络应用程序,用于结合 UNIPred 算法,能够以不平衡感知的方式同时处理集成和蛋白质功能预测,并轻松地以基于顶点的方式探索集成网络。该工具从不同的角度进行了深入修改,包括预测核心算法。对不同大小和连接性的网络进行了多次测试,以展示我们方法的巨大潜力;此外,还进行了富集分析,以评估检测到的社区的生物学意义。最后,将 CoV-人类网络嵌入系统中,并呈现相应的案例研究,包括 SARS-CoV2 蛋白质与人类宿主蛋白潜在相互作用的可视化和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a9/7755227/9f555e52fec6/pone.0244241.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验