Chen Renxiang, Zhu Jukun, Hu Xiaolin, Wu Haonian, Xu Xiangyang, Han Xingbo
Chongqing Engineering Laboratory for Transportation Engineering Application Robot, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
Chongqing Engineering Laboratory for Transportation Engineering Application Robot, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
ISA Trans. 2021 Aug;114:434-443. doi: 10.1016/j.isatra.2020.12.034. Epub 2020 Dec 17.
Aiming at the minority samples cannot be effectively diagnosed when the samples are limited and imbalanced, a multiple classifier ensemble of the weighted and balanced distribution adaptation method (MC-W-BDA) is presented to solve the rolling bearing's fault diagnosis problem under the limited samples imbalance. We adopt random sampling to obtain enough different training sample sets whose base classifiers are trained in the Reproducing Kernel Hilbert Space. The appropriate base classifiers are integrated into strong classifiers by multiple classifier ensemble strategy to obtain the final result of classification. In addition, we propose A-distance method to automatically set the optimal parameter (balance factor) in MC-W-BDA. Experimental verification verifies the feasibility and effectiveness of proposed approach.
针对样本有限且不均衡时少数样本无法有效诊断的问题,提出了一种加权平衡分布自适应方法的多分类器集成(MC-W-BDA),以解决有限样本不均衡情况下滚动轴承的故障诊断问题。我们采用随机采样来获得足够多不同的训练样本集,其基分类器在再生核希尔伯特空间中进行训练。通过多分类器集成策略将合适的基分类器整合为强分类器,以获得最终的分类结果。此外,我们提出了A距离方法来自动设置MC-W-BDA中的最优参数(平衡因子)。实验验证了所提方法的可行性和有效性。