Suppr超能文献

基于有限样本不平衡下加权平衡分布自适应的多分类器集成的滚动轴承故障诊断方法

Fault diagnosis method of rolling bearing based on multiple classifier ensemble of the weighted and balanced distribution adaptation under limited sample imbalance.

作者信息

Chen Renxiang, Zhu Jukun, Hu Xiaolin, Wu Haonian, Xu Xiangyang, Han Xingbo

机构信息

Chongqing Engineering Laboratory for Transportation Engineering Application Robot, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.

Chongqing Engineering Laboratory for Transportation Engineering Application Robot, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.

出版信息

ISA Trans. 2021 Aug;114:434-443. doi: 10.1016/j.isatra.2020.12.034. Epub 2020 Dec 17.

Abstract

Aiming at the minority samples cannot be effectively diagnosed when the samples are limited and imbalanced, a multiple classifier ensemble of the weighted and balanced distribution adaptation method (MC-W-BDA) is presented to solve the rolling bearing's fault diagnosis problem under the limited samples imbalance. We adopt random sampling to obtain enough different training sample sets whose base classifiers are trained in the Reproducing Kernel Hilbert Space. The appropriate base classifiers are integrated into strong classifiers by multiple classifier ensemble strategy to obtain the final result of classification. In addition, we propose A-distance method to automatically set the optimal parameter (balance factor) in MC-W-BDA. Experimental verification verifies the feasibility and effectiveness of proposed approach.

摘要

针对样本有限且不均衡时少数样本无法有效诊断的问题,提出了一种加权平衡分布自适应方法的多分类器集成(MC-W-BDA),以解决有限样本不均衡情况下滚动轴承的故障诊断问题。我们采用随机采样来获得足够多不同的训练样本集,其基分类器在再生核希尔伯特空间中进行训练。通过多分类器集成策略将合适的基分类器整合为强分类器,以获得最终的分类结果。此外,我们提出了A距离方法来自动设置MC-W-BDA中的最优参数(平衡因子)。实验验证了所提方法的可行性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验