Montreal Neurological Institute, Azrieli Centre for Autism Research, McGill University, 3775 Rue University, Room C18, Duff Medical Building, Montreal, Québec H3A 2B4, Canada.
Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA.
Neuroimage. 2021 Feb 15;227:117682. doi: 10.1016/j.neuroimage.2020.117682. Epub 2020 Dec 29.
Electroencephalographic (EEG) source reconstruction is a powerful approach that allows anatomical localization of electrophysiological brain activity. Algorithms used to estimate cortical sources require an anatomical model of the head and the brain, generally reconstructed using magnetic resonance imaging (MRI). When such scans are unavailable, a population average can be used for adults, but no average surface template is available for cortical source imaging in infants. To address this issue, we introduce a new series of 13 anatomical models for subjects between zero and 24 months of age. These templates are built from MRI averages and boundary element method (BEM) segmentation of head tissues available as part of the Neurodevelopmental MRI Database. Surfaces separating the pia mater, the gray matter, and the white matter were estimated using the Infant FreeSurfer pipeline. The surface of the skin as well as the outer and inner skull surfaces were extracted using a cube marching algorithm followed by Laplacian smoothing and mesh decimation. We post-processed these meshes to correct topological errors and ensure watertight meshes. Source reconstruction with these templates is demonstrated and validated using 100 high-density EEG recordings from 7-month-old infants. Hopefully, these templates will support future studies on EEG-based neuroimaging and functional connectivity in healthy infants as well as in clinical pediatric populations.
脑电(EEG)源重建是一种强大的方法,它可以对脑电生理活动进行解剖定位。用于估计皮质源的算法需要头部和大脑的解剖模型,通常使用磁共振成像(MRI)重建。当没有此类扫描时,可以为成年人使用人群平均值,但在婴儿的皮质源成像中没有可用的平均表面模板。为了解决这个问题,我们引入了一系列新的 13 个解剖模型,适用于 0 至 24 个月大的受试者。这些模板是由 MRI 平均值和边界元素法(BEM)分割头组织构建的,这些组织可作为神经发育性 MRI 数据库的一部分获得。使用婴儿 FreeSurfer 管道估计了软脑膜、灰质和白质之间的表面。使用立方图算法提取皮肤表面以及外颅骨和内颅骨表面,然后进行拉普拉斯平滑和网格细化。我们对这些网格进行后处理,以纠正拓扑错误并确保网格密封。使用 7 个月大婴儿的 100 个高密度 EEG 记录来演示和验证这些模板的源重建。希望这些模板将支持未来关于健康婴儿以及临床儿科人群的基于 EEG 的神经影像学和功能连接的研究。