Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
J Mol Cell Cardiol. 2021 Apr;153:44-59. doi: 10.1016/j.yjmcc.2020.12.005. Epub 2020 Dec 24.
Direct reprogramming of fibroblasts into cardiomyocytes (CMs) represents a promising strategy to regenerate CMs lost after ischemic heart injury. Overexpression of GATA4, HAND2, MEF2C, TBX5, miR-1, and miR-133 (GHMT2m) along with transforming growth factor beta (TGF-β) inhibition efficiently promote reprogramming. However, the mechanisms by which TGF-β blockade promotes cardiac reprogramming remain unknown. Here, we identify interactions between the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3, the SWI/SNF remodeling complex subunit BRG1, and cardiac transcription factors. Furthermore, canonical TGF-β signaling regulates the interaction between GATA4 and JMJD3. TGF-β activation impairs the ability of GATA4 to bind target genes and prevents demethylation of H3K27 at cardiac gene promoters during cardiac reprogramming. Finally, a mutation in GATA4 (V267M) that is associated with congenital heart disease exhibits reduced binding to JMJD3 and impairs cardiomyogenesis. Thus, we have identified an epigenetic mechanism wherein canonical TGF-β pathway activation impairs cardiac gene programming, in part by interfering with GATA4-JMJD3 interactions.
成纤维细胞直接重编程为心肌细胞(CMs)代表了一种有前途的策略,可以再生缺血性心脏损伤后丢失的 CMs。过表达 GATA4、HAND2、MEF2C、TBX5、miR-1 和 miR-133(GHMT2m)以及转化生长因子-β(TGF-β)抑制可有效促进重编程。然而,TGF-β 阻断促进心脏重编程的机制仍不清楚。在这里,我们鉴定了组蛋白 H3 赖氨酸 27 三甲基化(H3K27me3)去甲基酶 JMJD3、SWI/SNF 重塑复合物亚基 BRG1 和心脏转录因子之间的相互作用。此外,经典的 TGF-β 信号通路调节 GATA4 和 JMJD3 之间的相互作用。TGF-β 激活会损害 GATA4 结合靶基因的能力,并在心脏重编程过程中阻止心脏基因启动子处 H3K27 的去甲基化。最后,与先天性心脏病相关的 GATA4(V267M)突变显示与 JMJD3 的结合减少,并损害心肌生成。因此,我们已经确定了一种表观遗传机制,其中经典的 TGF-β 途径激活会损害心脏基因编程,部分原因是干扰 GATA4-JMJD3 相互作用。