Suppr超能文献

成纤维细胞的细胞重编程在心脏再生中。

Cellular reprogramming of fibroblasts in heart regeneration.

机构信息

Division of Cardiology, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

Division of Cardiology, Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Gates Center for Regenerative Medicine and Stem Cell Biology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

出版信息

J Mol Cell Cardiol. 2023 Jul;180:84-93. doi: 10.1016/j.yjmcc.2023.03.009. Epub 2023 Mar 23.

Abstract

Myocardial infarction causes the loss of cardiomyocytes and the formation of cardiac fibrosis due to the activation of cardiac fibroblasts, leading to cardiac dysfunction and heart failure. Unfortunately, current therapeutic interventions can only slow the disease progression. Furthermore, they cannot fully restore cardiac function, likely because the adult human heart lacks sufficient capacity to regenerate cardiomyocytes. Therefore, intensive efforts have focused on developing therapeutics to regenerate the damaged heart. Several strategies have been intensively investigated, including stimulation of cardiomyocyte proliferation, transplantation of stem cell-derived cardiomyocytes, and conversion of fibroblasts into cardiac cells. Resident cardiac fibroblasts are critical in the maintenance of the structure and contractility of the heart. Fibroblast plasticity makes this type of cells be reprogrammed into many cell types, including but not limited to induced pluripotent stem cells, induced cardiac progenitor cells, and induced cardiomyocytes. Fibroblasts have become a therapeutic target due to their critical roles in cardiac pathogenesis. This review summarizes the reprogramming of fibroblasts into induced pluripotent stem cell-derived cardiomyocytes, induced cardiac progenitor cells, and induced cardiomyocytes to repair a damaged heart, outlines recent findings in utilizing fibroblast-derived cells for heart regeneration, and discusses the limitations and challenges.

摘要

心肌梗死导致心肌细胞的损失和心脏成纤维细胞的激活导致心脏纤维化的形成,导致心脏功能障碍和心力衰竭。不幸的是,目前的治疗干预措施只能减缓疾病的进展。此外,它们不能完全恢复心脏功能,可能是因为成人心脏缺乏足够的再生心肌细胞的能力。因此,人们集中精力开发治疗方法来再生受损的心脏。已经深入研究了几种策略,包括刺激心肌细胞增殖、干细胞衍生的心肌细胞移植,以及将成纤维细胞转化为心脏细胞。驻留的心肌成纤维细胞对于维持心脏的结构和收缩性至关重要。成纤维细胞的可塑性使这种细胞能够被重新编程为多种细胞类型,包括但不限于诱导多能干细胞、诱导性心肌前体细胞和诱导性心肌细胞。由于成纤维细胞在心脏发病机制中的关键作用,它们已成为治疗的靶点。本综述总结了将成纤维细胞重编程为诱导多能干细胞衍生的心肌细胞、诱导性心肌前体细胞和诱导性心肌细胞以修复受损心脏的研究进展,概述了利用成纤维细胞衍生细胞进行心脏再生的最新发现,并讨论了其局限性和挑战。

相似文献

1
Cellular reprogramming of fibroblasts in heart regeneration.
J Mol Cell Cardiol. 2023 Jul;180:84-93. doi: 10.1016/j.yjmcc.2023.03.009. Epub 2023 Mar 23.
2
Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair.
Cells. 2022 Dec 3;11(23):3914. doi: 10.3390/cells11233914.
3
The Future of Direct Cardiac Reprogramming: Any Cocktail Variety?
Int J Mol Sci. 2020 Oct 26;21(21):7950. doi: 10.3390/ijms21217950.
4
Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
Circ Res. 2015 Apr 10;116(8):1378-91. doi: 10.1161/CIRCRESAHA.116.305374.
5
Role of somatic cell sources in the maturation degree of human induced pluripotent stem cell-derived cardiomyocytes.
Biochim Biophys Acta Mol Cell Res. 2020 Mar;1867(3):118538. doi: 10.1016/j.bbamcr.2019.118538. Epub 2019 Aug 28.
6
MicroRNAs and Cardiac Regeneration.
Circ Res. 2015 May 8;116(10):1700-11. doi: 10.1161/CIRCRESAHA.116.304377.
7
In vivo reprogramming as a new approach to cardiac regenerative therapy.
Semin Cell Dev Biol. 2022 Feb;122:21-27. doi: 10.1016/j.semcdb.2021.06.019. Epub 2021 Jun 29.
8
Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine.
Circ J. 2015;79(2):245-54. doi: 10.1253/circj.CJ-14-1372. Epub 2015 Jan 16.
10
Direct Reprogramming Improves Cardiac Function and Reverses Fibrosis in Chronic Myocardial Infarction.
Circulation. 2023 Jan 17;147(3):223-238. doi: 10.1161/CIRCULATIONAHA.121.058655. Epub 2022 Dec 12.

引用本文的文献

1
Application of autologous stem cells in the treatment of ischaemic cardiomyopathy with heart failure after myocardial infarction.
J Stem Cells Regen Med. 2025 Jan 28;21(1):3-10. doi: 10.46582/jsrm.2101002. eCollection 2025.
3
Hydrogels for Cardiac Tissue Regeneration: Current and Future Developments.
Int J Mol Sci. 2025 Mar 5;26(5):2309. doi: 10.3390/ijms26052309.
4
Cardiac tissue engineering: an emerging approach to the treatment of heart failure.
Front Bioeng Biotechnol. 2024 Aug 15;12:1441933. doi: 10.3389/fbioe.2024.1441933. eCollection 2024.
5
Myocardial Recovery versus Myocardial Regeneration: Mechanisms and Therapeutic Modulation.
Methodist Debakey Cardiovasc J. 2024 Aug 20;20(4):31-41. doi: 10.14797/mdcvj.1400. eCollection 2024.
6
The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors.
Stem Cell Rev Rep. 2024 Oct;20(7):1671-1691. doi: 10.1007/s12015-024-10765-9. Epub 2024 Jul 18.
8
RNA-Binding Proteins as Critical Post-Transcriptional Regulators of Cardiac Regeneration.
Int J Mol Sci. 2023 Jul 26;24(15):12004. doi: 10.3390/ijms241512004.

本文引用的文献

1
Cardiac fibroblasts and mechanosensation in heart development, health and disease.
Nat Rev Cardiol. 2023 May;20(5):309-324. doi: 10.1038/s41569-022-00799-2. Epub 2022 Nov 14.
2
Gene Therapy Knockdown of Hippo Signaling Resolves Arrhythmic Events in Pigs After Myocardial Infarction.
Circulation. 2022 Nov 15;146(20):1558-1560. doi: 10.1161/CIRCULATIONAHA.122.059972. Epub 2022 Nov 14.
3
Targeting GPCRs to treat cardiac fibrosis.
Front Cardiovasc Med. 2022 Oct 6;9:1011176. doi: 10.3389/fcvm.2022.1011176. eCollection 2022.
4
Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes.
Cell Stem Cell. 2022 Oct 6;29(10):1491-1504.e9. doi: 10.1016/j.stem.2022.09.006.
5
TBX20 Improves Contractility and Mitochondrial Function During Direct Human Cardiac Reprogramming.
Circulation. 2022 Nov 15;146(20):1518-1536. doi: 10.1161/CIRCULATIONAHA.122.059713. Epub 2022 Sep 14.
6
Cardiomyocyte-Specific Long Noncoding RNA Regulates Alternative Splicing of the Triadin Gene in the Heart.
Circulation. 2022 Aug 30;146(9):699-714. doi: 10.1161/CIRCULATIONAHA.121.058017. Epub 2022 Jul 18.
7
Human cardiac organoids to model COVID-19 cytokine storm induced cardiac injuries.
J Tissue Eng Regen Med. 2022 Sep;16(9):799-811. doi: 10.1002/term.3327. Epub 2022 Jun 11.
8
Fibroblast fate determination during cardiac reprogramming by remodeling of actin filaments.
Stem Cell Reports. 2022 Jul 12;17(7):1604-1619. doi: 10.1016/j.stemcr.2022.05.004. Epub 2022 Jun 9.
9
Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions.
Nat Biomed Eng. 2022 Apr;6(4):403-420. doi: 10.1038/s41551-022-00865-7. Epub 2022 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验