文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合物纳米颗粒疫苗以应对新出现和大流行的威胁。

Polymeric nanoparticle vaccines to combat emerging and pandemic threats.

机构信息

Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.

Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.

出版信息

Biomaterials. 2021 Jan;268:120597. doi: 10.1016/j.biomaterials.2020.120597. Epub 2020 Dec 10.


DOI:10.1016/j.biomaterials.2020.120597
PMID:33360074
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7834201/
Abstract

Subunit vaccines are more advantageous than live attenuated vaccines in terms of safety and scale-up manufacture. However, this often comes as a trade-off to their efficacy. Over the years, polymeric nanoparticles have been developed to improve vaccine potency, by engineering their physicochemical properties to incorporate multiple immunological cues to mimic pathogenic microbes and viruses. This review covers recent advances in polymeric nanostructures developed toward particulate vaccines. It focuses on the impact of microbe mimicry (e.g. size, charge, hydrophobicity, and surface chemistry) on modulation of the nanoparticles' delivery, trafficking, and targeting antigen-presenting cells to elicit potent humoral and cellular immune responses. This review also provides up-to-date progresses on rational designs of a wide variety of polymeric nanostructures that are loaded with antigens and immunostimulatory molecules, ranging from particles, micelles, nanogels, and polymersomes to advanced core-shell structures where polymeric particles are coated with lipids, cell membranes, or proteins.

摘要

亚单位疫苗在安全性和规模化生产方面比减毒活疫苗更具优势。然而,这往往是以降低其效力为代价的。多年来,人们已经开发出聚合物纳米粒子来提高疫苗的效力,通过工程化其物理化学性质,将多种免疫信号整合到模拟病原体微生物和病毒的纳米粒子中。本综述涵盖了近年来在开发用于颗粒状疫苗的聚合物纳米结构方面的进展。它重点介绍了微生物模拟(例如大小、电荷、疏水性和表面化学)对纳米粒子的递呈、运输和靶向抗原呈递细胞以引发强烈的体液和细胞免疫反应的影响。本综述还提供了最新的进展,介绍了各种负载抗原和免疫刺激分子的聚合物纳米结构的合理设计,范围从颗粒、胶束、纳米凝胶和聚合物囊泡到先进的核壳结构,其中聚合物颗粒被脂质、细胞膜或蛋白质包覆。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/127f049f8651/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/c67c2b30ac68/fx1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/0f51b72f1c49/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/11022137f0fc/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/687b3b7d7724/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/787cfe9958f2/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/a73b7939d2bd/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/33e88cba16fb/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/ebe3660ba7a5/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/f9d758fb4b29/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/69da81583f7f/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/127f049f8651/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/c67c2b30ac68/fx1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/0f51b72f1c49/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/11022137f0fc/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/687b3b7d7724/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/787cfe9958f2/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/a73b7939d2bd/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/33e88cba16fb/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/ebe3660ba7a5/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/f9d758fb4b29/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/69da81583f7f/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7834201/127f049f8651/gr10_lrg.jpg

相似文献

[1]
Polymeric nanoparticle vaccines to combat emerging and pandemic threats.

Biomaterials. 2021-1

[2]
Biomaterials for nanoparticle vaccine delivery systems.

Pharm Res. 2014-10

[3]
Enhanced Immune Responses by Virus-Mimetic Polymeric Nanostructures Against Infectious Diseases.

Front Immunol. 2021

[4]
pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides.

ACS Nano. 2013-4-30

[5]
Modular core-shell polymeric nanoparticles mimicking viral structures for vaccination.

J Control Release. 2018-11-11

[6]
Polymeric nanogels as vaccine delivery systems.

Nanomedicine. 2012-7-5

[7]
[Development of polymeric nanoparticles-based vaccine].

Nihon Rinsho. 2006-2

[8]
Nanoparticle Vaccines Against Infectious Diseases.

Front Immunol. 2018-10-4

[9]
Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats.

Adv Nanobiomed Res. 2022-3

[10]
Polymeric nanoparticle-based nanovaccines for cancer immunotherapy.

Mater Horiz. 2023-2-6

引用本文的文献

[1]
Mucosal immunity and vaccination strategies: current insights and future perspectives.

Mol Biomed. 2025-8-20

[2]
Self-assembled and intestine-targeting florfenicol nano-micelles effectively inhibit drug-resistant eradicate biofilm, and maintain intestinal homeostasis.

J Pharm Anal. 2025-7

[3]
Silica-calcium phosphate nanoparticles delivering recombinant influenza hemagglutinin DNA can induce long-lasting T cell immune cross-protection in mice.

Front Immunol. 2025-6-3

[4]
Polysaccharide nanoparticles as potential immune adjuvants: Mechanism and function.

Acta Pharm Sin B. 2025-4

[5]
Advances in the Functionalization of Vaccine Delivery Systems: Innovative Strategies and Translational Perspectives.

Pharmaceutics. 2025-5-12

[6]
Polyanhydride-Based Microparticles for Programmable Pulsatile Release of Diphtheria Toxoid (DT) for Single-Injection Self-Boosting Vaccines.

Adv Mater. 2025-8

[7]
Beyond the Pandemic Era: Recent Advances and Efficacy of SARS-CoV-2 Vaccines Against Emerging Variants of Concern.

Vaccines (Basel). 2025-4-17

[8]
Nanotechnology-based strategies for vaccine development: accelerating innovation and delivery.

Biomater Transl. 2025-3-25

[9]
β-1,3 Glucan Microparticles & Nanoparticles: Fabrication Methods & Applications in Immunomodulation & Targeted Drug Delivery.

Adv Healthc Mater. 2025-5

[10]
Advances in Parenteral Nanocarriers and Delivery Devices: A Comprehensive Review.

Curr Pharm Des. 2025

本文引用的文献

[1]
Polymer-Protein Core-Shell Nanoparticles for Enhanced Antigen Immunogenicity.

ACS Macro Lett. 2017-4-18

[2]
Biomaterials-Based Vaccination Strategies for the Induction of CD8T Cell Responses.

ACS Biomater Sci Eng. 2017-2-13

[3]
Polymers for DNA Vaccine Delivery.

ACS Biomater Sci Eng. 2017-2-13

[4]
Self-Assembled Protein-Coated Polyhydroxyalkanoate Beads: Properties and Biomedical Applications.

ACS Biomater Sci Eng. 2017-12-11

[5]
Design and Biological Assembly of Polyester Beads Displaying Pneumococcal Antigens as Particulate Vaccine.

ACS Biomater Sci Eng. 2018-9-10

[6]
Combination Nanovaccine Demonstrates Synergistic Enhancement in Efficacy against Influenza.

ACS Biomater Sci Eng. 2016-3-14

[7]
A Cationic Micelle Complex Improves CD8+ T Cell Responses in Vaccination Against Unmodified Protein Antigen.

ACS Biomater Sci Eng. 2016-2-8

[8]
Pentablock Copolymer Micelle Nanoadjuvants Enhance Cytosolic Delivery of Antigen and Improve Vaccine Efficacy while Inducing Low Inflammation.

ACS Biomater Sci Eng. 2019-3-11

[9]
Critical Size Limit of Biodegradable Nanoparticles for Enhanced Lymph Node Trafficking and Paracortex Penetration.

Nano Res. 2019-4

[10]
Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies.

Nat Microbiol. 2020-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索