Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany; Freie Universität Berlin, Brain Language Laboratory, Department of Philosophy and Humanities, Berlin, Germany.
Neuroimage Clin. 2021;29:102536. doi: 10.1016/j.nicl.2020.102536. Epub 2020 Dec 24.
Repetitive TMS (rTMS) allows for non-invasive and transient disruption of local neuronal functioning. We used machine learning approaches to assess whether brain tumor patients can be accurately classified into aphasic and non-aphasic groups using their rTMS language mapping results as input features. Given that each tumor affects the subject-specific language networks differently, resulting in heterogenous rTMS functional mappings, we propose the use of machine learning strategies to classify potential patterns of rTMS language mapping results. We retrospectively included 90 patients with left perisylvian world health organization (WHO) grade II-IV gliomas that underwent presurgical navigated rTMS language mapping. Within our cohort, 29 of 90 (32.2%) patients suffered from at least mild aphasia as shown in the Aachen Aphasia Test based Berlin Aphasia Score (BAS). After spatial normalization to MNI 152 of all rTMS spots, we calculated the error rate (ER) in each stimulated cortical area (28 regions of interest, ROI) by automated anatomical labeling parcellation (AAL3) and IIT. We used a support vector machine (SVM) to classify significant areas in relation to aphasia. After feeding the ROIs into the SVM model, it revealed that in addition to age (w = 2.98), the ERs of the left supramarginal gyrus (w = 3.64), left inferior parietal gyrus (w = 2.28) and right pars triangularis (w = 1.34) contributed more than other features to the model. The model's sensitivity was 86.2%, the specificity was 82.0%, the overall accuracy was 85.5% and the AUC was 89.3%. Our results demonstrate an increased vulnerability of right inferior pars triangularis to rTMS in aphasic patients due to left perisylvian gliomas. This finding points towards a functional relevant involvement of the right pars triangularis in response to aphasia. The tumor location feature, specified by calculating overlaps with white and grey matter atlases, did not affect the SVM model. The left supramarginal gyrus as a feature improved our SVM model the most. Additionally, our results could point towards a decreasing potential for neuroplasticity with age.
重复经颅磁刺激(rTMS)可实现非侵入性和短暂的局部神经元功能中断。我们使用机器学习方法,评估能否将脑肿瘤患者根据其 rTMS 语言映射结果作为输入特征准确分类为失语症组和非失语症组。由于每个肿瘤对特定个体的语言网络的影响不同,导致 rTMS 功能映射存在异质性,因此我们提出使用机器学习策略对 rTMS 语言映射结果的潜在模式进行分类。
我们回顾性纳入了 90 例接受术前导航 rTMS 语言映射的左大脑外侧沟世界卫生组织(WHO)Ⅱ-Ⅳ级胶质瘤患者。在我们的队列中,90 例患者中有 29 例(32.2%)至少表现出轻度失语症,基于 Aachen 失语症测试的柏林失语症评分(BAS)显示。在将所有 rTMS 点空间归一化为 MNI 152 后,我们通过自动解剖标记分割(AAL3)和 IIT 在每个受刺激的皮质区域(28 个感兴趣区域,ROI)计算错误率(ER)。我们使用支持向量机(SVM)来分类与失语症相关的显著区域。
在将 ROI 输入 SVM 模型后,发现除了年龄(w=2.98)之外,左侧缘上回(w=3.64)、左侧顶下小叶(w=2.28)和右侧三角部(w=1.34)的 ER 对模型的贡献大于其他特征。模型的灵敏度为 86.2%,特异性为 82.0%,总准确率为 85.5%,AUC 为 89.3%。
我们的结果表明,由于左大脑外侧沟胶质瘤,右侧三角部在失语症患者中对 rTMS 的易感性增加。这一发现表明右侧三角部在应对失语症时具有功能相关性。肿瘤位置特征,通过计算与白质和灰质图谱的重叠来指定,不会影响 SVM 模型。左侧缘上回作为一个特征,对我们的 SVM 模型的改进最大。此外,我们的结果可能表明随着年龄的增长,神经可塑性的潜力降低。