基于迭代反馈的图像和视频息肉分割模型。

Iterative feedback-based models for image and video polyp segmentation.

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.

Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Republic of Singapore.

出版信息

Comput Biol Med. 2024 Jul;177:108569. doi: 10.1016/j.compbiomed.2024.108569. Epub 2024 May 11.

Abstract

Accurate segmentation of polyps in colonoscopy images has gained significant attention in recent years, given its crucial role in automated colorectal cancer diagnosis. Many existing deep learning-based methods follow a one-stage processing pipeline, often involving feature fusion across different levels or utilizing boundary-related attention mechanisms. Drawing on the success of applying Iterative Feedback Units (IFU) in image polyp segmentation, this paper proposes FlowICBNet by extending the IFU to the domain of video polyp segmentation. By harnessing the unique capabilities of IFU to propagate and refine past segmentation results, our method proves effective in mitigating challenges linked to the inherent limitations of endoscopic imaging, notably the presence of frequent camera shake and frame defocusing. Furthermore, in FlowICBNet, we introduce two pivotal modules: Reference Frame Selection (RFS) and Flow Guided Warping (FGW). These modules play a crucial role in filtering and selecting the most suitable historical reference frames for the task at hand. The experimental results on a large video polyp segmentation dataset demonstrate that our method can significantly outperform state-of-the-art methods by notable margins achieving an average metrics improvement of 7.5% on SUN-SEG-Easy and 7.4% on SUN-SEG-Hard. Our code is available at https://github.com/eraserNut/ICBNet.

摘要

近年来,由于在自动化结直肠癌诊断中的关键作用,结肠镜图像中息肉的精确分割受到了极大关注。许多现有的基于深度学习的方法采用单阶段处理管道,通常涉及不同层次的特征融合或利用边界相关的注意力机制。受在图像息肉分割中应用迭代反馈单元(IFU)的成功启发,本文通过将 IFU 扩展到视频息肉分割领域,提出了 FlowICBNet。通过利用 IFU 传播和细化过去分割结果的独特能力,我们的方法在减轻与内窥镜成像固有局限性相关的挑战方面非常有效,特别是频繁的相机抖动和焦点模糊。此外,在 FlowICBNet 中,我们引入了两个关键模块:参考帧选择(RFS)和流引导变形(FGW)。这些模块在过滤和选择最适合手头任务的历史参考帧方面发挥着重要作用。在大型视频息肉分割数据集上的实验结果表明,我们的方法可以显著优于最先进的方法,在 SUN-SEG-Easy 上平均指标提高 7.5%,在 SUN-SEG-Hard 上提高 7.4%。我们的代码可在 https://github.com/eraserNut/ICBNet 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索